996 resultados para display behavior
                                
Resumo:
The pregnancy-induced increase in self-licking observed in rats is important for mammary gland development and lactation. Reproductive experience has epidemiologial implications such as a decrease in the incidence of mammary gland cancer in women and it also influences various behavioral, neurochemical and endocrine parameters. The aim of the present study was to investigate the influence of reproductive experience on grooming behavior patterns during pregnancy in rats. Self-grooming behavior was measured in age-matched virgin, primi- and multigravid (days 7, 8, 9, 19, and 20 of pregnancy) rats. General grooming (head, forelimbs and shoulders) was not significantly different among virgin, primi- and multigravid rats during pregnancy. Confirming previous work, pregnant rats spent significantly more time in specific grooming (mammary glands, nipple lines, genital and pelvic regions) than did virgin animals. In addition, self- licking of mammary glands was significantly increased in multi- as compared to primigravid rats on days 8, 9, 19 and 20 of pregnancy. The increase in mammary gland grooming observed in multigravid rats appears to be a consequence of previous reproductive experience. These data show that reproductive experience modulates mammary gland grooming during pregnancy, possibly contributing to successful reproduction.
                                
Resumo:
JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.
                                
Resumo:
The medial septum participates in the modulation of exploratory behavior triggered by novelty. Also, selective lesions of the cholinergic component of the septohippocampal system alter the habituation of rats to an elevated plus-maze without modifying anxiety indices. We investigated the effects of the intraseptal injection of the cholinergic immunotoxin 192 IgG-saporin (SAP) on the behavior of rats in an open-field. Thirty-nine male Wistar rats (weight: 194-230 g) were divided into three groups, non-injected controls and rats injected with either saline (0.5 µl) or SAP (237.5 ng/0.5 µl). Twelve days after surgery, the animals were placed in a square open-field (120 cm) and allowed to freely explore for 5 min. After the test, the rats were killed by decapitation and the septum, hippocampus and frontal cortex were removed and assayed for acetylcholinesterase activity. SAP increased acetylcholinesterase activity in the septum, hippocampus and frontal cortex and decreased the total distance run (9.15 ± 1.51 m) in comparison to controls (13.49 ± 0.91 m). The time spent in the center and at the periphery was not altered by SAP but the distance run was reduced during the first and second minutes (2.43 ± 0.36 and 1.75 ± 0.34 m) compared to controls (4.18 ± 0.26 and 3.14 ± 0.25 m). SAP-treated rats showed decreased but persistent exploration throughout the session. These results suggest that septohippocampal cholinergic mechanisms contribute to at least two critical processes, one related to the motivation to explore new environments and the other to the acquisition and storage of spatial information (i.e., spatial memory).
                                
Resumo:
Female Nile tilapia incubate fertilized eggs in their mouth until they are released as alevins. Consequently, the female may not eat during this period. Thus, it would be expected that female Nile tilapia are more adapted to recovering from fasting than males, which do not display this behavior. To test this hypothesis we conducted an experiment with two groups of fish consisting of 7 males and 7 females each, with one fish per aquarium. The experiment was divided into three phases involving adjustment of the animals to experimental aquaria (0-15th day), fasting (16th-27th day), and refeeding (27th-42nd day). Compensatory growth performance was assessed by specific growth rate, weight, food conversion efficiency and food intake. Food conversion efficiency increased after fasting with a similar rate for both sexes. However, specific growth rate, food intake and weight gain (%) were significantly higher in males than in females in the refeeding phase. Thus, we conclude that male Nile tilapia can compensate for a fasting period more efficiently than females, refuting our hypothesis. A possible mechanism involved in the greater male compensation is that they presented greater hyperphagia than females, concomitantly with a similar rate of food conversion efficiency for both sexes during refeeding, which would probably be provoking greater growth in males.
                                
Resumo:
The desire to create a statistical or mathematical model, which would allow predicting the future changes in stock prices, was born many years ago. Economists and mathematicians are trying to solve this task by applying statistical analysis and physical laws, but there are still no satisfactory results. The main reason for this is that a stock exchange is a non-stationary, unstable and complex system, which is influenced by many factors. In this thesis the New York Stock Exchange was considered as the system to be explored. A topological analysis, basic statistical tools and singular value decomposition were conducted for understanding the behavior of the market. Two methods for normalization of initial daily closure prices by Dow Jones and S&P500 were introduced and applied for further analysis. As a result, some unexpected features were identified, such as a shape of distribution of correlation matrix, a bulk of which is shifted to the right hand side with respect to zero. Also non-ergodicity of NYSE was confirmed graphically. It was shown, that singular vectors differ from each other by a constant factor. There are for certain results no clear conclusions from this work, but it creates a good basis for the further analysis of market topology.
                                
Resumo:
The mechanical and hygroscopic properties of paper and board are factors affecting the whole lifecycle of a product, including paper/board quality, production, converting, and material and energy savings. The progress of shrinkage profiles, loose edges of web, baggy web causing wrinkling and misregistration in printing are examples of factors affecting runnability and end product quality in the drying section and converting processes, where paper or board is treated as a moving web. The structural properties and internal stresses or plastic strain differences built up during production also cause the end-product defects related to distortion of the shape of the product such as sheet or box. The objective of this work was to construct a model capable of capturing the characteristic behavior of hygroscopic orthotropic material under moisture change, during different external in-plane stretch or stress conditions. Two independent experimental models were constructed: the elasto-plastic material model and the hygroexpansivity-shrinkage model. Both describe the structural properties of the sheet with a fiber orientation probability distribution, and both are functions of the dry solids content and fiber orientation anisotropy index. The anisotropy index, introduced in this work, simplifies the procedure of determining the constitutive parameters of the material model and the hygroexpansion coefficients in different in-plane directions of the orthotropic sheet. The mathematically consistent elasto-plastic material model and the dry solids content dependent hygroexpansivity have been constructed over the entire range from wet to dry. The presented elastoplastic and hygroexpansivity-shrinkage models can be used in an analytical approach to estimate the plastic strain and shrinkage in simple one-dimensional cases. For studies of the combined and more complicated effects of hygro-elasto-plastic behavior, both models were implemented in a finite element program for a numerical solution. The finite element approach also offered possibilities for studying different structural variations of orthotropic planar material, as well as local buckling behavior and internal stress situations of the sheet or web generated by local strain differences. A comparison of the simulation examples presented in this work to results published earlier confirms that the hygro-elasto-plastic model provides at least qualitatively reasonable estimates. The application potential of the hygro-elasto-plastic model is versatile, including several phenomena and defects appearing in the drying, converting and end-use conditions of the paper or board webs and products, or in other corresponding complex planar materials.
                                
Resumo:
Studies of behavior, endocrinology and physiology have described experiments in which animals housed in groups or in isolation were normally tested individually. The isolation of the animal from its group for testing is perhaps the most common situation used today in experimental procedures, i.e., there is no consideration of the acute stress which occurs when the animal is submitted to a situation different from that it is normally accustomed to, i.e., group living. In the present study, we used 90 male 120-day-old rats (Rattus norvegicus) divided into 5 groups of 18 animals, which were housed 3 per cage, in a total of 6 cages. The animals were tested individually or with their groups for exploratory behavior. Hormones were determined by radioimmunoassay using specific kits. The results showed statistically significant differences between testing conditions in terms of behavior and of adrenocorticotrophic hormone (ACTH: from 116.8 ± 15.27 to 88.77 ± 18.74 when in group and to 159.6 ± 11.53 pg/ml when isolated), corticosterone (from 561.01 ± 77.04 to 1036.47 ± 79.81 when in group and to 784.71 ± 55.88 ng/ml when isolated), luteinizing hormone (from 0.84 ± 0.09 to 0.58 ± 0.05 when in group and to 0.52 ± 0.06 ng/ml when isolated) and prolactin (from 5.18 ± 0.33 to 9.37 ± 0.96 when in group and to 10.18 ± 1.23 ng/ml when isolated) secretion, but not in terms of follicle-stimulating hormone or testosterone secretion. The most important feature observed was that in each cage there was one animal with higher ACTH levels than the other two; furthermore, the exploratory behavior of this animal was different, indicating the occurrence of almost constant higher vigilance in this animal (latency to leave the den in group: 99.17 ± 34.95 and isolated: 675.3 ± 145.3 s). The data indicate that in each group there is an animal in a peculiar situation and its behavior can be detected by ACTH determination in addition to behavioral performance.
                                
Resumo:
In several rodent species, an increase or recovery of sexual behavior can be observed when sexually satiated males are placed in contact with a novel mate. In order to assess the influence of female novelty on the courtship behavior of guinea pigs (Cavia porcellus), four adult males were observed during four daily 15-min sessions while interacting with the same pregnant female (same-female sessions). A new female was presented during the fifth session (switched-female session). The duration of behavioral categories was obtained from videotape records using an observational software. From the first to the second session, all males decreased the time allocated to investigating (sniffing and licking), following, and mounting the female, and that response did not recover by the end of the same-female sessions. No similar decreasing tendencies were detected in the circling or rumba categories. A marked increase of investigating occurred in all males from the last same-female session (8.1, 11.9, 15.1 and 17.3 percent session time) to the switched-female one (16.4, 18.4, 37.1 and 28.9 percent session time, respectively). Increases in following and circling were recorded in three of four males, and full-blown recovery of mounting in one male. No consistent changes in the females' responses to males (following or attacking) were observed throughout testing. These results are consistent with the hypothesis that guinea pig males recognize individual females and that courtship responses may suffer a habituation/recovery process controlled by mate novelty.
                                
Resumo:
We describe the behavior of the snail Megalobulimus abbreviatus upon receiving thermal stimuli and the effects of pretreatment with morphine and naloxone on behavior after a thermal stimulus, in order to establish a useful model for nociceptive experiments. Snails submitted to non-functional (22ºC) and non-thermal hot-plate stress (30ºC) only displayed exploratory behavior. However, the animals submitted to a thermal stimulus (50ºC) displayed biphasic avoidance behavior. Latency was measured from the time the animal was placed on the hot plate to the time when the animal lifted the head-foot complex 1 cm from the substrate, indicating aversive thermal behavior. Other animals were pretreated with morphine (5, 10, 20 mg/kg) or naloxone (2.5, 5.0, 7.5 mg/kg) 15 min prior to receiving a thermal stimulus (50ºC; N = 9 in each group). The results (means ± SD) showed an extremely significant difference in response latency between the group treated with 20 mg/kg morphine (63.18 ± 14.47 s) and the other experimental groups (P < 0.001). With 2.5 mg/kg (16.26 ± 3.19 s), 5.0 mg/kg (11.53 ± 1.64 s) and 7.5 mg/kg naloxone (7.38 ± 1.6 s), there was a significant, not dose-dependent decrease in latency compared to the control (33.44 ± 8.53 s) and saline groups (29.1 ± 9.91 s). No statistically significant difference was found between the naloxone-treated groups. With naloxone plus morphine, there was a significant decrease in latency when compared to all other groups (minimum 64% in the saline group and maximum 83.2% decrease in the morphine group). These results provide evidence of the involvement of endogenous opioid peptides in the control of thermal withdrawal behavior in this snail, and reveal a stereotyped and reproducible avoidance behavior for this snail species, which could be studied in other pharmacological and neurophysiological studies.
                                
Resumo:
We have observed that intracerebroventricular (icv) injection of selective N-methyl-D-aspartic acid (NMDA)-type glutamatergic receptor antagonists inhibits lordosis in ovariectomized (OVX), estrogen-primed rats receiving progesterone or luteinizing hormone-releasing hormone (LHRH). When NMDA was injected into OVX estrogen-primed rats, it induced a significant increase in lordosis. The interaction between LHRH and glutamate was previously explored by us and another groups. The noradrenergic systems have a functional role in the regulation of LHRH release. The purpose of the present study was to explore the interaction between glutamatergic and noradrenergic transmission. The action of prazosin, an alpha1- and alpha2b-noradrenergic antagonist, was studied here by injecting it icv (1.75 and 3.5 µg/6 µL) prior to NMDA administration (1 µg/2 µL) in OVX estrogen-primed Sprague-Dawley rats (240-270 g). Rats manually restrained were injected over a period of 2 min, and tested 1.5 h later. The enhancing effect induced by NMDA on the lordosis/mount ratio at high doses (67.06 ± 3.28, N = 28) when compared to saline controls (6 and 2 µL, 16.59 ± 3.20, N = 27) was abolished by prazosin administration (17.04 ± 5.52, N = 17, and 9.33 ± 3.21, N = 20, P < 0.001 for both doses). Plasma LH levels decreased significantly only with the higher dose of prazosin (1.99 ± 0.24 ng/mL, N = 18, compared to saline-NMDA effect, 5.96 ± 2.01 ng/mL, N = 13, P < 0.05). Behavioral effects seem to be more sensitive to the alpha-blockade than hormonal effects. These findings strongly suggest that the facilitatory effects of NMDA on both lordosis and LH secretion in this model are mediated by alpha-noradrenergic transmission.
                                
Resumo:
The objective of the present study was to examine gender differences in the influence of paternal alcoholism on children's social-emotional development and to determine whether paternal alcoholism is associated with a greater number of externalizing symptoms in the male offspring. From the Mannheim Study of Risk Children, an ongoing longitudinal study of a high-risk population, the developmental data of 219 children [193 (95 boys and 98 girls) of non-alcoholic fathers, non-COAs, and 26 (14 boys, 12 girls) of alcoholic fathers, COAs] were analyzed from birth to the age of 11 years. Paternal alcoholism was defined according to the ICD-10 categories of alcohol dependence and harmful use. Socio-demographic data, cognitive development, number and severity of behavior problems, and gender-related differences in the rates of externalizing and internalizing symptoms were assessed using standardized instruments (IQ tests, Child Behavior Checklist questionnaire and diagnostic interviews). The general linear model analysis revealed a significant overall effect of paternal alcoholism on the number of child psychiatric problems (F = 21.872, d.f. = 1.217, P < 0.001). Beginning at age 2, significantly higher numbers of externalizing symptoms were observed among COAs. In female COAs, a pattern similar to that of the male COAs emerged, with the predominance of delinquent and aggressive behavior. Unlike male COAs, females showed an increase of internalizing symptoms up to age 11 years. Of these, somatic complaints revealed the strongest discriminating effect in 11-year-old females. Children of alcoholic fathers are at high risk for psychopathology. Gender-related differences seem to exist and may contribute to different phenotypes during development from early childhood to adolescence.
                                
Resumo:
Ureases are enzymes from plants, fungi and bacteria that catalyze the hydrolysis of urea to form ammonia and carbon dioxide. While fungal and plant ureases are homo-oligomers of 90-kDa subunits, bacterial ureases are multimers of two or three subunit complexes. We showed that some isoforms of jack bean urease, canatoxin and the classical urease, bind to glycoconjugates and induce platelet aggregation. Canatoxin also promotes release of histamine from mast cells, insulin from pancreatic cells and neurotransmitters from brain synaptosomes. In vivo it induces rat paw edema and neutrophil chemotaxis. These effects are independent of ureolytic activity and require activation of eicosanoid metabolism and calcium channels. Helicobacter pylori, a Gram-negative bacterium that colonizes the human stomach mucosa, causes gastric ulcers and cancer by a mechanism that is not understood. H. pylori produces factors that damage gastric epithelial cells, such as the vacuolating cytotoxin VacA, the cytotoxin-associated protein CagA, and a urease (up to 10% of bacterial protein) that neutralizes the acidic medium permitting its survival in the stomach. H. pylori whole cells or extracts of its water-soluble proteins promote inflammation, activate neutrophils and induce the release of cytokines. In this paper we review data from the literature suggesting that H. pylori urease displays many of the biological activities observed for jack bean ureases and show that bacterial ureases have a secretagogue effect modulated by eicosanoid metabolites through lipoxygenase pathways. These findings could be relevant to the elucidation of the role of urease in the pathogenesis of the gastrointestinal disease caused by H. pylori.
                                
Resumo:
Companies require information in order to gain an improved understanding of their customers. Data concerning customers, their interests and behavior are collected through different loyalty programs. The amount of data stored in company data bases has increased exponentially over the years and become difficult to handle. This research area is the subject of much current interest, not only in academia but also in practice, as is shown by several magazines and blogs that are covering topics on how to get to know your customers, Big Data, information visualization, and data warehousing. In this Ph.D. thesis, the Self-Organizing Map and two extensions of it – the Weighted Self-Organizing Map (WSOM) and the Self-Organizing Time Map (SOTM) – are used as data mining methods for extracting information from large amounts of customer data. The thesis focuses on how data mining methods can be used to model and analyze customer data in order to gain an overview of the customer base, as well as, for analyzing niche-markets. The thesis uses real world customer data to create models for customer profiling. Evaluation of the built models is performed by CRM experts from the retailing industry. The experts considered the information gained with help of the models to be valuable and useful for decision making and for making strategic planning for the future.
                                
Resumo:
Lappeenranta University of Technology School of Technology Technical Physics Evgenii Zhukov MAGNETIZATION STUDIES OF POLYSTYRENE/MULTIWALL CARBON NANOTUBE COMPOSITE FILMS Master’s thesis 2015 55 pages, 41 pictures, 9 Tables. Examiners: Professor Erkki Lähderanta D.Sc. Ivan Zakharchuk Keywords: polystyrene, multi-walled carbon nanotubes, MWCNT, composite, magnetization, SQUID. In this thesis magnetic properties of polystyrene/multiwall carbon nanotube (MWCNT) composites are investigated with Quantum Design SQUID magnetometer (MPMS XL). The surface of the composite films is studied via BRUKER Multimode 8 Atomic Force Microscope, as well. The polystyrene/MWCNT composites have been prepared by the group of professor Okotrub (Physics Chemistry of Nanomaterials laboratory, Nikolaev Institute of Inorganic Chemistry, Russia). The composite films have been prepared by solution processing and stretching method. The approximate length and inner diameter of the MWCNTs used in fabrication are 260 μm and 10 nm, respectively. The content of MWCNTs is 1 and 2.5 contents percent (wt%) for studied samples. The stretching of the samples is 30% for samples with 1 and 2.5 wt% content, and one sample with 1 wt% loading of MWCNTs is 100% stretched. MWCNTs aligned perpendicular to a silicon substrate are used as a reference sample. The magnetization field dependencies of the samples exhibit hysteresis behavior. The values of saturation magnetization of composite films are much less compared to that of the reference sample. The saturation magnetization coercitivity field value drops with decrease of MWCNT content. At high magnetic fields strong presence of diamagnetism is observed. Measurements in magnetic field parallel and perpendicular to the composite plate display anisotropy with respect to the direction of stretching. Temperature dependences of magnetization for all samples display difference between zero-field cooled and field-cooled curves of magnetization. This divergence confirms the presence of magnetic interactions in the material. The atomic force microscopy study of the composites’ surfaces revealed that they are relatively smooth and the nanotubes are aligned with the axis of stretching to some extent.
                                
Resumo:
The molecular functions of the non-cell cycle-related Cyclin-dependent kinase 5 (Cdk5) have been of primary interest within the neuroscience field, but novel undertakings are constantly emerging for the kinase in tissue homeostasis, as well as in diseases such as diabetes and cancer. Although Cdk5 activation is predominantly regulated by specific non-cyclin activator protein binding, additional mechanisms have proved to orchestrate Cdk5 signaling in cells. For example, the interaction between the intermediate filament protein nestin and Cdk5 has been proposed to determine cellular fate during neuronal apoptosis through nestin-dependent adjustment of the sensitive balance and turnover of Cdk5 activators. While nestin constitutes a crucial regulatory scaffold for appropriate Cdk5 activation in apoptosis, Cdk5 itself phosphorylates nestin with the consequence of filament reorganization in both neuronal progenitors and differentiating muscle cells. Interestingly, the two proteins are often found coexpressed in various tissues and cell types, proposing that nestin-mediated scaffolding of Cdk5 and its activators may be applicable to other tissue systems as well. In the literature, the molecular functions of nestin have remained in the shade, as it is mostly exploited as a marker protein for progenitor cells. In light of these studies, the aim of this thesis was to assess the importance of the nestin scaffold in regulation of Cdk5 actions in cell fate decisions. This thesis can be subdivided into two major projects: one that studied the nature of the Cdk5-nestin interplay in muscle, and one that assessed their role in prostate cancer. During differentiation of a myoblast cell line, the filament formation properties of nestin was found to be crucial in directing Cdk5 activity, with direct consequences on the process of differentiation. Also the genetic knockout of nestin was found to influence Cdk5 activity, although differentiation per se was not affected. Instead, the genetic ablation of nestin had broad consequences on muscle homeostasis and regeneration. While the nestin-mediated regulation of Cdk5 in muscle was found to act in multiple ways, the connection remained more elusive in cancer models. Cdk5 was, however, established as a significant determinant of prostate cancer proliferation; a behavior uncharacteristic for this differentiation-associated kinase. Through complex and simultaneous regulation of two major prostate cancer pathways, Cdk5 was placed upstream of both Akt kinase and the androgen receptor. Its action on proliferation was nonetheless mainly exerted through the Akt signaling pathway in various cancer models. In summary, this thesis contributed to the knowledge of Cdk5 regulation and functions in two atypical settings; proliferation (in a cancer framework) and muscle differentiation, which is a poorly understood model system in the Cdk5 field. This balance between proliferation and differentiation implemented by Cdk5 is ultimately regulated (where present) by the dynamics of the cytoskeletal nestin scaffold.
 
                    