999 resultados para deuterated methane cluster
Resumo:
The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J=0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. (C) 2004 American Institute of Physics.
Resumo:
Using bis(3,5-dimethylpyrazol-1-yl)methane as an N-N donor ligand, a trans-[Ru-III(N-N)(2)Cl-2](+) core has been isolated from the direct reaction of the ligand with RuCl3 center dot xH(2)O and characterized structurally for the. first time. The core displays a rhombic EPR spectrum and a quasireversible Ru(II/III) couple with an E-1/2 of -0.34 V versus NHE. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Bis(diphenylphosphino)methane dioxide compounds of uranyl nitrate and uranyl bis(beta-diketonates) have been synthesized and characterized by spectroscopic and X-ray diffraction methods. Monodentate, bidentate chelate and bridging bidentate modes of coordination for this ligand have been established from the single-crystal X-ray diffraction studies of its compounds, [UO2(DBM)(2)DPPMO], [UO2(NO3)(2)DPPNO] and [{UO2(DBM)(2)}(2)DPPMO], respectively. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The syntheses of several ethynyl-gold(I) phosphine substituted tolans (1,2-diaryl acetylenes) of general form [Au(C=CC6H4C=CC6H4X)(PPh3)] are described [X = Me (2a), OMe (2b), CO2Me (2c), NO2 (2d), CN (2e)]. These complexes react readily with [Ru-3(CO) 10(mu-dppm)] to give the heterometallic clusters [Ru3(mu-AuPPh3)(mu-eta(1), eta(2)-C2C6H4C, CC6H4X)(CO)(7)(mu-dppm)] (3a-e). The crystallographically determined molecular structures of 2b, 2d, 2e and 3a-e are reported here, that of 2a having been described on a previous occasion. Structural, spectroscopic and electrochemical studies were conducted and have revealed little electronic interaction between the remote substituent and the organometallic end-caps. (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
A rare mu(6)-oxo-centered Mn-6 mixed-valent cluster (1) is prepared and used as a secondary building unit for the self-assembly of its azido-bridged polymeric analogue (2) in a systematic way with the retention of the Mn-6 core of (1). Both complexes are characterized by X-ray single-crystal structure determination. The complex 1 was crystallized in a monoclinic system, space group P2(1), a = 11.252(5) A, b = 20.893(9) A, c = 12.301(6) A, and beta = 115.853(7)degrees, whereas the polymeric analogue was crystallized in an orthorhombic system, space group P2(1)2(1)2(1), a = 13.1941(8) A, b = 14.9897(9) A, and c = 27.8746(14) A. Variable-temperature magnetic behavior showed the presence of strong antiferromagnetic interaction in both cases.
Resumo:
[Cu4L2(bpy)(4)(H2O)(3)](ClO4)(4).2.5H(2)O, 1, a new tetranuclear Cu-II cluster showing square planar geometry, formed with aspartate bridging ligand (L) has been synthesized. The global magnetic coupling is ferromagnetic but theoretical DFT/B3LYP calculations are necessary to assign which Cu-L-Cu side is ferro or antiferromagnetically coupled.
Resumo:
Under low latitude conditions, minimization of solar radiation within the urban environment may often be a desirable criterion in urban design. The dominance of the direct component of the global solar irradiance under clear high sun conditions requires that the street solar access must be small. It is well known that the size and proportion of open spaces has a great influence on the urban microclimate This paper is directed towards finding the interaction between urban canyon geometry and incident solar radiation. The effect of building height and street width on the shading of the street surfaces and ground for different orientations have been examined and evaluated. It is aimed to explore the extent to which these parameters affect the temperature in the street. This work is based on air and surface temperature measurements taken in different urban street canyons in EL-Oued City (hot and and climate), Algeria. In general, the results show that there are less air temperature variations compared to the surface temperature which really depends on the street geometry and sky view factor. In other words, there is a big correlation between the street geometry, sky view factor and surface temperatures.
Resumo:
Under low latitude conditions, minimisation of solar irradiance within the urban environment may often be an important criterion in urban design. This can be achieved when the obstruction angle is large (high H/W ratio, H = height, W = width). Solar access to streets can always be decreased by increasing H/W to larger values. It is shown in this paper that the street canyon orientation (and not only the H/W ratio) has a considerable effect on solar shading and urban microclimate. The paper demonstrates through a series of shading simulation and temperature measurements that a number of useful relationships can be developed between the geometry and the microclimate of urban street canyons. These relationships are potentially helpful to assist in the formulation of urban design guidelines governing street dimensions and orientations for use by urban designers.
Resumo:
Background: Medication errors are an important cause of morbidity and mortality in primary care. The aims of this study are to determine the effectiveness, cost effectiveness and acceptability of a pharmacist-led information-technology-based complex intervention compared with simple feedback in reducing proportions of patients at risk from potentially hazardous prescribing and medicines management in general (family) practice. Methods: Research subject group: "At-risk" patients registered with computerised general practices in two geographical regions in England. Design: Parallel group pragmatic cluster randomised trial. Interventions: Practices will be randomised to either: (i) Computer-generated feedback; or (ii) Pharmacist-led intervention comprising of computer-generated feedback, educational outreach and dedicated support. Primary outcome measures: The proportion of patients in each practice at six and 12 months post intervention: - with a computer-recorded history of peptic ulcer being prescribed non-selective non-steroidal anti-inflammatory drugs - with a computer-recorded diagnosis of asthma being prescribed beta-blockers - aged 75 years and older receiving long-term prescriptions for angiotensin converting enzyme inhibitors or loop diuretics without a recorded assessment of renal function and electrolytes in the preceding 15 months. Secondary outcome measures; These relate to a number of other examples of potentially hazardous prescribing and medicines management. Economic analysis: An economic evaluation will be done of the cost per error avoided, from the perspective of the UK National Health Service (NHS), comparing the pharmacist-led intervention with simple feedback. Qualitative analysis: A qualitative study will be conducted to explore the views and experiences of health care professionals and NHS managers concerning the interventions, and investigate possible reasons why the interventions prove effective, or conversely prove ineffective. Sample size: 34 practices in each of the two treatment arms would provide at least 80% power (two-tailed alpha of 0.05) to demonstrate a 50% reduction in error rates for each of the three primary outcome measures in the pharmacist-led intervention arm compared with a 11% reduction in the simple feedback arm. Discussion: At the time of submission of this article, 72 general practices have been recruited (36 in each arm of the trial) and the interventions have been delivered. Analysis has not yet been undertaken.
Resumo:
Methane is the second most important anthropogenic greenhouse gas in the atmosphere next to carbon dioxide. Its global warming potential (GWP) for a time horizon of 100 years is 25, which makes it an attractive target for climate mitigation policies. Although the methane GWP traditionally includes the methane indirect effects on the concentrations of ozone and stratospheric water vapour, it does not take into account the production of carbon dioxide from methane oxidation. We argue here that this CO2-induced effect should be included for fossil sources of methane, which results in slightly larger GWP values for all time horizons. If the global temperature change potential is used as an alternative climate metric, then the impact of the CO2-induced effect is proportionally much larger. We also discuss what the correction term should be for methane from anthropogenic biogenic sources.
Resumo:
Sub)picosecond transient absorption (TA) and time-resolved infrared (TRIR) spectra of the cluster [OS3(CO)(10-) (AcPy-MV)](2+) (the clication AcPy-MV = Acpy-MV2+ = [2-pyridylacetimine-N-(2-(1'-methyl-4,4'-bipyridine-1,1'-diium-1-yl) ethyl)] (PF6)(2)) (1(2+)) reveal that photoinduced electron transfer to the electron-accepting 4,4'-bipyridine-1,1'diium (MV2+) moiety competes with the fast relaxation of the initially populated sigmapi* excited state of the cluster to the ground state and/or cleavage of an Os-Os bond. The TA spectra of cluster 12 in acetone, obtained by irradiation into its lowest-energy absorption band, show the characteristic absorptions of the one-electron-reduced MV*(+) unit at 400 and 615 nm, in accordance with population of a charge-separated (CS) state in which a cluster-core electron has been transferred to the lowest pi* orbital of the remote MV2+ unit. This assignment is confirmed by picosecond TRIR spectra that show a large shift of the pilot highest-frequency nu(CO) band of 1(2+) by ca. +40 cm(-1), reflecting the photooxidation of the cluster core. The CS state is populated via fast (4.2 x 10(11) s(-1)) and efficient (88%) oxidative quenching of the optically populated sigmapi* excited state and decays biexponentially with lifetimes of 38 and 166 ps (1:2:1 ratio) with a complete regeneration of the parent cluster. About 12% of the cluster molecules in the sigmapi* excited state form long-lived open-core biradicals. In strongly coordinating acetonitrile, however, the cluster core-to-MV2+ electron transfer in cluster 12+ results in the irreversible formation of secondary photoproducts with a photooxidized cluster core. The photochemical behavior of the [Os-3(CO)(10)(alpha-diimine-MV)](2+) (donor-acceptor) dyad can be controlled by an externally applied electronic bias. Electrochemical one-electron reduction of the MV2+ moiety prior to the irradiation reduces its electron-accepting character to such an extent that the photoinduced electron transfer to MV*+ is no longer feasible. Instead, the irradiation of reduced cluster 1(.)+ results in the reversible formation of an open-core zwitterion, the ultimate photoproduct also observed upon irradiation of related nonsubstituted clusters [Os-3(CO)(10)(alpha-diimine)] in strongly coordinating solvents such as acetonitrile.
Resumo:
Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator, and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.