923 resultados para dangerous marine fish


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproduction in many organisms can be disrupted by changes to the physical environment, such as those predicted to occur during climate change. Marine organisms face the dual climate change threats of increasing temperature and ocean acidification, yet no studies have examined the potential interactive effects of these stressors on reproduction in marine fishes. We used a long-term experiment to test the interactive effects of increased temperature and CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus. Adult breeding pairs were kept for 10 months at three temperatures, 28.5°C (+0.0°C), 30.0°C (+1.5°C) and 31.5°C (+3.0°C), cross-factored with 3 CO2 levels, a current day control (417 µatm) and moderate (644 µatm) and high (1134 µatm) treatments consistent with the range of CO2 projections for the year 2100 under RCP8.5. We recorded each egg clutch produced during the breeding season, the number of eggs laid per clutch, average egg size, fertilization success, survival to hatching, hatchling length and yolk provisioning. Adult body condition, hepatosomatic index, gonadosomatic index, and plasma 17beta-estradiol concentrations were measured at the end of the breeding season to determine the effect of prolonged exposure to increased temperature and elevated CO2 on adults, and to examine potential physiological mechanisms for changes in reproduction. Temperature had by far the stronger influence on reproduction, with clear declines in reproduction occurring in the +1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a minimal effect on the majority of reproductive traits measured, but caused a decline in offspring quality in combination with elevated temperature. We detected no significant effect of temperature or CO2 on adult body condition or hepatosomatic index. Elevated temperature had a significant negative effect on plasma 17beta-estradiol concentrations, suggesting that declines in reproduction with increasing temperature were due to the thermal sensitivity of reproductive hormones rather than a reduction in energy available for reproduction. Our results show that elevated temperature exerts a stronger influence than high CO2 on reproduction in A. melanopus. Understanding how these two environmental variables interact to affect the reproductive performance of marine organisms will be important for predicting the future impacts of climate change.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising CO2 levels in the oceans are predicted to have serious consequences for many marine taxa. Recent studies suggest that non-genetic parental effects may reduce the impact of high CO2 on the growth, survival and routine metabolic rate of marine fishes, but whether the parental environment mitigates behavioural and sensory impairment associated with high CO2 remains unknown. Here, we tested the acute effects of elevated CO2 on the escape responses of juvenile fish and whether such effects were altered by exposure of parents to increased CO2 (transgenerational acclimation). Elevated CO2 negatively affected the reactivity and locomotor performance of juvenile fish, but parental exposure to high CO2 reduced the effects in some traits, indicating the potential for acclimation of behavioural impairment across generations. However, acclimation was not complete in some traits, and absent in others, suggesting that transgenerational acclimation does not completely compensate the effects of high CO2 on escape responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics.