996 resultados para correlation fermion electron hubbard dmft
Resumo:
The aim of this work is to invert the ionospheric electron density profile from Riometer (Relative Ionospheric opacity meter) measurement. The newly Riometer instrument KAIRA (Kilpisjärvi Atmospheric Imaging Receiver Array) is used to measure the cosmic HF radio noise absorption that taking place in the D-region ionosphere between 50 to 90 km. In order to invert the electron density profile synthetic data is used to feed the unknown parameter Neq using spline height method, which works by taking electron density profile at different altitude. Moreover, smoothing prior method also used to sample from the posterior distribution by truncating the prior covariance matrix. The smoothing profile approach makes the problem easier to find the posterior using MCMC (Markov Chain Monte Carlo) method.
Resumo:
The C/T-13910 mutation is the major factor responsible for the persistence of the lactase-phlorizin hydrolase (LCT) gene expression. Mutation G/A-22018 appears to be only in co-segregation with C/T-13910. The objective of the present study was to assess the presence of these two mutations in Brazilian individuals with and without lactose malabsorption diagnosed by the hydrogen breath test (HBT). Ten milk-tolerant and 10 milk-intolerant individuals underwent the HBT after oral ingestion of 50 g lactose (equivalent to 1 L of milk). Analyses for C/T-13910 and G/A-22018 mutations were performed using a PCR-based method. Primers were designed for this study based on the GenBank sequence. The CT/GA, CT/AA, and TT/AA genotypes (lactase persistence) were found in 10 individuals with negative HBT. The CC/GG genotype (lactase non-persistence) was found in 10 individuals, 9 of them with positive HBT results. There was a significant agreement between the presence of mutations in the LCT gene promoter and HBT results (kappa = -0.9, P < 0.001). The CT/AA genotype has not been described previously and seems to be related to lactase persistence. The present study showed a significant agreement between the occurrence of mutations G/A-22018 and C/T-13910 and lactose absorption in Brazilian subjects, suggesting that the molecular test used here could be proposed for the laboratory diagnosis of adult-type primary hypolactasia.
Resumo:
Triphenyltetrazolium chloride (TTC) staining and echocardiography (ECHO) are methods used to determine experimental myocardial infarction (MI) size, whose practical applicability should be expanded. Our objectives were to analyze the accuracy of ECHO in determining infarction size in rats during the first days following coronary occlusion and to test whether a simplified single measurement by TTC correctly indicates MI size, as determined by the average value for multiple slices. Infarction was induced in female Wistar rats by coronary artery occlusion and MI size analysis was performed after the acute (7th day) and chronic periods (after 4 weeks) by ECHO matched with TTC. ECHO and TTC showed similar values of MI size (% of left ventricle perimeter) in acute (ECHO: 33 ± 11, TTC: 35 ± 14) and chronic (ECHO: 38 ± 14, TTC: 39 ± 13 periods), and also presented an excellent correlation (r = 0.92, P < 0.001). Although measurements from different heart planes showed discrepancies, a single measurement acquired from the mid-ventricular level by TTC was a good estimate of MI size calculated by the average of multiple planes, with minimal disagreement (Bland-Altman test with mean ratio bias of 0.99 ± 0.07) and close to an ideal correlation (r = 0.99, P < 0.001). In the present study, ECHO was confirmed as a useful method for the determination of MI size even in the acute phase. Also, the single measure of a mid-ventricular section proposed as a simplification of the TTC method is a satisfactory prediction of average MI extension.
Resumo:
During pregnancy and protein restriction, changes in serum insulin and leptin levels, food intake and several metabolic parameters normally result in enhanced adiposity. We evaluated serum leptin and insulin levels and their correlations with some predictive obesity variables in Wistar rats (90 days), up to the 14th day of pregnancy: control non-pregnant (N = 5) and pregnant (N = 7) groups (control diet: 17% protein), and low-protein non-pregnant (N = 5) and pregnant (N = 6) groups (low-protein diet: 6%). Independent of the protein content of the diet, pregnancy increased total (F1,19 = 22.28, P < 0.001) and relative (F1,19 = 5.57, P < 0.03) food intake, the variation of weight (F1,19 = 49.79, P < 0.000) and final body weight (F1,19 = 19.52, P < 0.001), but glycemia (F1,19 = 9.02, P = 0.01) and the relative weight of gonadal adipose tissue (F1,19 = 17.11, P < 0.001) were decreased. Pregnancy (F1,19 = 18.13, P < 0.001) and low-protein diet (F1,19 = 20.35, P < 0.001) increased the absolute weight of brown adipose tissue. However, the relative weight of this tissue was increased only by protein restriction (F1,19 = 15.20, P < 0.001) and the relative lipid in carcass was decreased in low-protein groups (F1,19 = 4.34, P = 0.05). Serum insulin and leptin levels were similar among groups and did not correlate with food intake. However, there was a positive relationship between serum insulin levels and carcass fat depots in low-protein groups (r = 0.37, P < 0.05), while in pregnancy serum leptin correlated with weight of gonadal (r = 0.39, P < 0.02) and retroperitoneal (r = 0.41, P < 0.01) adipose tissues. Unexpectedly, protein restriction during 14 days of pregnancy did not alter the serum profile of adiposity signals and their effects on food intake and adiposity, probably due to the short term of exposure to low-protein diet.
Resumo:
The aim of the present study was to evaluate the relationship between salivary oxidative stress and dental-oral health. Healthy young adults, matched for gender and age, with (N = 21, 10 men, mean age: 20.3 ± 1 years) and without (N = 16, 8 men, mean age: 21.2 ± 1.8 years) caries were included in this study. The World Health Organization (WHO) caries diagnostic criteria were used for determining the decayed, missing, filled teeth (DMFT) index. The oral hygiene and gingival status were assessed using the simplified oral hygiene index and gingival index, respectively. Unstimulated salivary total protein, glutathione (GSH), lipid peroxidation and total sialic acid levels, carbonic anhydrase activity, and salivary buffering capacity were determined by standard methods. Furthermore, salivary pH was measured with pH paper and salivary flow rate was calculated. Simplified oral hygiene index and gingival index were not significantly different between groups but DMFT scores were significant (P < 0.01). Only, GSH values were significantly different (P < 0.05) between groups (2.2 and 1.6 mg/g protein in young adults without caries and with caries, respectively). There was a significant negative correlation between DMFT and GSH (r = -0.391; P < 0.05; Pearson's correlation coefficient). Our results suggest that there is an association between caries history and salivary GSH levels.
Resumo:
The immunomodulador glatiramer acetate (GA) has been shown to significantly reduce the severity of symptoms during the course of multiple sclerosis and in its animal model - experimental autoimmune encephalomyelitis (EAE). Since GA may influence the response of non-neuronal cells in the spinal cord, it is possible that, to some extent, this drug affects the synaptic changes induced during the exacerbation of EAE. In the present study, we investigated whether GA has a positive influence on the loss of inputs to the motoneurons during the course of EAE in rats. Lewis rats were subjected to EAE associated with GA or placebo treatment. The animals were sacrificed after 15 days of treatment and the spinal cords processed for immunohistochemical analysis and transmission electron microscopy. A correlation between the synaptic changes and glial activation was obtained by performing labeling of synaptophysin and glial fibrillary acidic protein using immunohistochemical analysis. Ultrastructural analysis of the terminals apposed to alpha motoneurons was also performed by electron transmission microscopy. Interestingly, although the GA treatment preserved synaptophysin labeling, it did not significantly reduce the glial reaction, indicating that inflammatory activity was still present. Also, ultrastructural analysis showed that GA treatment significantly prevented retraction of both F and S type terminals compared to placebo. The present results indicate that the immunomodulator GA has an influence on the stability of nerve terminals in the spinal cord, which in turn may contribute to its neuroprotective effects during the course of multiple sclerosis.
Resumo:
The aim of this study was to determine the correlation between total nitrite/nitrate concentrations (NOx) and the kinetic parameters of monoamine oxidase enzymes (MAO-A and MAO-B) and semicarbazide-sensitive amine oxidase (SSAO) in human mesenteric arteries. Arteries were from non-diabetic and type 2 diabetic patients with sigmoid or rectum carcinoma for whom surgery was the first option and who were not exposed to neo-adjuvant therapy. Segments of human inferior mesenteric arteries from non-diabetic (61.1 ± 8.9 years old, 7 males and 5 females, N = 12) and type 2 diabetic patients (65.8 ± 6.2 years old, 8 males and 4 females, N = 12) were used to determine NOx concentrations and the kinetic parameters of MAO-A, MAO-B and SSAO by the Griess reaction and by radiochemical assay, respectively. The NOx concentrations in arteries from diabetic patients did not differ significantly from those of the non-diabetic group (10.28 ± 4.61 vs 10.71 ± 4.32 nmol/mg protein, respectively). In the non-diabetic group, there was a positive correlation between NOx concentrations and MAO-B parameters: Km (r = 0.612, P = 0.034) and Vmax (r = 0.593, P = 0.042), and a negative correlation with the SSAO parameters: Km (r = -0.625, P = 0.029) and Vmax (r = -0.754, P = 0.005). However, in the diabetic group no correlation was found between NOx concentrations and the three kinetic parameters of the enzymes. These results suggest an important function of sympathetic nerves and vascular NOx concentrations in arteries of non-diabetic patients. Thus, these results confirm the importance of a balance between oxidants and antioxidants in the maintenance of vascular homeostasis to prevent oxidative stress.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.
Resumo:
Low-sodium and high-potassium diets have been recommended as an adjunct to prevention and treatment of hypertension. Analysis of these nutrients in 24-h urine has been considered the reference method to estimate daily intake of these minerals. However, 24-h urine collection is difficult in epidemiological studies, since urine must be collected and stored in job environments. Therefore, strategies for shorter durations of urine collection at home have been proposed. We have previously reported that collecting urine during a 12-h period (overnight) is more feasible and that creatinine clearance correlated strongly with that detected in 24-h samples. In the present study, we collected urine for 24 h divided into two 12-h periods (from 7:00 am to 7:00 pm and from 7:00 pm to 7:00 am next day). A sample of 109 apparently healthy volunteers aged 30 to 74 years of both genders working in a University institution was investigated. Subjects with previous myocardial infarction, stroke, renal insufficiency, and pregnant women were not included. Significant (P < 0.001) Spearman correlation coefficients (r s) were found between the total amount of sodium and potassium excreted in the urine collected at night and in the 24-h period (r s = 0.76 and 0.74, respectively). Additionally, the 12-h sodium and potassium excretions (means ± SD, 95% confidence interval) corresponded to 47.3 ± 11.2%, 95%CI = 45.3-49.3, and 39.3 ± 4.6%, 95%CI = 37.3-41.3, respectively, of the 24-h excretion of these ions. Therefore, these findings support the assumption that 12-h urine collected at night can be used as a reliable tool to estimate 24-h intake/excretion of sodium and potassium.
Resumo:
Single nucleotide polymorphisms in the promoter region ofinterleukin-18 (IL-18), an inflammatory cytokine, have been linked to susceptibility to many diseases, including cancer and immune dysfunction. Here, we explored the potential association between theIL-18 -607C/A (rs1946518) promoter region polymorphism and susceptibility to ischemic stroke (IS). This locus was amplified from peripheral blood samples of 386 IS patients (cases) and 364 healthy individuals (controls) by the polymerase chain reaction with sequence-specific primers. Significant differences were observed by the χ2 test in the -607C/A (rs1946518) genotype and allele frequencies between cases and controls (P < 0.05). Furthermore, after excluding for age, gender, smoking status, and hypertension, logistic regression indicated that IS susceptibility of -607C carriers increased 1.6 times (OR = 1.601, 95%CI = 1.148-2.233, P = 0.006) compared to -607A carriers. Additionally, similar increases in IS risk were noted for male patients or patients less than 65 years old. In conclusion,IL-18 -607C/A (rs1946518) promoter polymorphism is associated with IS susceptibility, and the C allele may confer increased IS risk.
Resumo:
The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.
Resumo:
Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival.
Resumo:
Recognition of pathogens is performed by specific receptors in cells of the innate immune system, which may undergo modulation during the continuum of clinical manifestations of sepsis. Monocytes and neutrophils play a key role in host defense by sensing and destroying microorganisms. This study aimed to evaluate the expression of CD14 receptors on monocytes; CD66b and CXCR2 receptors on neutrophils; and TLR2, TLR4, TLR5, TLR9, and CD11b receptors on both cell types of septic patients. Seventy-seven septic patients (SP) and 40 healthy volunteers (HV) were included in the study, and blood samples were collected on day zero (D0) and after 7 days of therapy (D7). Evaluation of the cellular receptors was carried out by flow cytometry. Expression of CD14 on monocytes and of CD11b and CXCR2 on neutrophils from SP was lower than that from HV. Conversely, expression of TLR5 on monocytes and neutrophils was higher in SP compared with HV. Expression of TLR2 on the surface of neutrophils and that of TLR5 on monocytes and neutrophils of SP was lower at D7 than at D0. In addition, SP who survived showed reduced expression of TLR2 and TLR4 on the surface of neutrophils at D7 compared to D0. Expression of CXCR2 for surviving patients was higher at follow-up compared to baseline. We conclude that expression of recognition and cell signaling receptors is differentially regulated between SP and HV depending on the receptor being evaluated.
Resumo:
Radiotherapy is one of the main approaches to cure prostate cancer, and its success depends on the accuracy of dose planning. A complicating factor is the presence of a metallic prosthesis in the femur and pelvis, which is becoming more common in elderly populations. The goal of this work was to perform dose measurements to check the accuracy of radiotherapy treatment planning under these complicated conditions. To accomplish this, a scale phantom of an adult pelvic region was used with alanine dosimeters inserted in the prostate region. This phantom was irradiated according to the planned treatment under the following three conditions: with two metallic prostheses in the region of the femur head, with only one prosthesis, and without any prostheses. The combined relative standard uncertainty of dose measurement by electron spin resonance (ESR)/alanine was 5.05%, whereas the combined relative standard uncertainty of the applied dose was 3.35%, resulting in a combined relative standard uncertainty of the whole process of 6.06%. The ESR dosimetry indicated that there was no difference (P>0.05, ANOVA) in dosage between the planned dose and treatments. The results are in the range of the planned dose, within the combined relative uncertainty, demonstrating that the treatment-planning system compensates for the effects caused by the presence of femur and hip metal prostheses.
Resumo:
Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.