992 resultados para computational statistics
Correlation of simulated and measured noise emissions using a combined 1D/3D computational technique
Resumo:
This paper presents a statistical-based fault diagnosis scheme for application to internal combustion engines. The scheme relies on an identified model that describes the relationships between a set of recorded engine variables using principal component analysis (PCA). Since combustion cycles are complex in nature and produce nonlinear relationships between the recorded engine variables, the paper proposes the use of nonlinear PCA (NLPCA). The paper further justifies the use of NLPCA by comparing the model accuracy of the NLPCA model with that of a linear PCA model. A new nonlinear variable reconstruction algorithm and bivariate scatter plots are proposed for fault isolation, following the application of NLPCA. The proposed technique allows the diagnosis of different fault types under steady-state operating conditions. More precisely, nonlinear variable reconstruction can remove the fault signature from the recorded engine data, which allows the identification and isolation of the root cause of abnormal engine behaviour. The paper shows that this can lead to (i) an enhanced identification of potential root causes of abnormal events and (ii) the masking of faulty sensor readings. The effectiveness of the enhanced NLPCA based monitoring scheme is illustrated by its application to a sensor fault and a process fault. The sensor fault relates to a drift in the fuel flow reading, whilst the process fault relates to a partial blockage of the intercooler. These faults are introduced to a Volkswagen TDI 1.9 Litre diesel engine mounted on an experimental engine test bench facility.
Resumo:
Summary statistics continue to play an important role in identifying and monitoring patterns and trends in educational inequalities between differing groups of pupils over time. However, this article argues that their uncritical use can also encourage the labelling of whole groups of pupils as ‘underachievers’ or ‘overachievers’ as the findings of group-level data are simply applied to individual group members, a practice commonly termed the ‘ecological fallacy’. Some of the adverse consequences of this will be outlined in relation to current debates concerning gender and ethnic differences in educational attainment. It will be argued that one way of countering this uncritical use of summary statistics and the ecological fallacy that it tends to encourage, is to make much more use of the principles and methods of what has been termed ‘exploratory data analysis’. Such an approach is illustrated through a secondary analysis of data from the Youth Cohort Study of England and Wales, focusing on gender and ethnic differences in educational attainment. It will be shown that, by placing an emphasis on the graphical display of data and on encouraging researchers to describe those data more qualitatively, such an approach represents an essential addition to the use of simple summary statistics and helps to avoid the limitations associated with them.