1000 resultados para composition operators
Resumo:
The underwater casting of relatively thin lifts of concrete in water requires the proportioning of highly flowable concrete that can resist water dilution and segregation and spread readily into place. An investigation was carried out to determine the effects of antiwashout admixture concentration, water-cementitious materials ratio, and binder composition on the washout resistance of highly flowable concrete. Two main types of antiwashout admixtures were used: 1) a powdered welan gum at concentrations of 0.07 and 0.15% (by mass of binder); and 2) a liquid-based cellulosic admixture with dosages up to 1.65 L/100 kg of binder. The water-cementitious materials ratios were set at 0.41 and 0.47, corresponding to high-quality underwater concrete. Four binder compositions were used: a standard Canadian Type 10 cement, the same cement with 10% silica fume replacement, the cement with 50% granulated blast-furnace slag replacement, and a ternary cement containing 6% silica fume and 20% Class F fly ash. The concentrations of anti-washout admixture have direct impact on washout resistance. For a given washout loss, greater slump flow consistency can be achieved with the increases in anti-washout admixture concentration and decreases in water-binder ratio. The washout mass loss can be reduced, for a given consistency
Resumo:
Concrete used for underwater repair is often proportioned to spread readily into place and self-consolidate, and to develop high resistance to segregation and water dilution. An investigation was carried out to determine the effect of the dosage of antiwashout admixture, water-cementitious materials ratio (w/cm), and binder composition on the relative residual strength of highly flowable underwater concrete. Two types of antiwashout admixtures were used: a powdered welan gum at 0.07 and 0.15% by mass of binder, and a liquid-based cellulosic admixture employed at a high dosage of 1 to 1.65 L/100 kg of cementitious materials. The w/cms were set at 0.41 and 0.47 to secure adequate performance of underwater concrete for construction and repair. Four binder compositions were used: a Canadian Type 10 cement; a cement with 10% silica fume replacement; a cement with 50% replacement of granulated blast-furnace slag; and a ternary binder containing 6% silica fume and 20% Class F fly ash. Test results indicate that for a given washout mass loss and slump flow consistency, greater relative residual strength can be secured when the dosage of antiwashout admixture is increased, the w/cm is reduced, and a binary binder with 10% silica fume substitution or the ternary binder are employed. Such mixtures can develop relative residual compressive strengths of 85 and 80%, compared to mixtures cast in air, when the value of washout loss is limited to 4 and 6% for mixtures with slump flow values of 450 and 550 mm, respectively.
Resumo:
In the paper we give an exposition of the major results concerning the relation between first order cohomology of Banach algebras of operators on a Banach space with coefficients in specified modules and the geometry of the underlying Banach space. In particular we shall compare the properties weak amenability and amenability for Banach algebras A(X), the approximable operators on a Banach space X. Whereas amenability is a local property of the Banach space X, weak amenability is often the consequence of properties of large scale geometry.
Resumo:
We give a necessary and sufficient condition for amenability of the Banach algebra of approximable operators on a Banach space. We further investigate the relationship between amenability of this algebra and factorization of operators, strengthening known results and developing new techniques to determine whether or not a given Banach space carries an amenable algebra of approximable operators. Using these techniques, we are able to show, among other things, the non-amenability of the algebra of approximable operators on Tsirelson’s space.