980 resultados para clustered multiway relay network (MWRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Node placement plays a significant role in the effective and successful deployment of Wireless Sensor Networks (WSNs), i.e., meeting design goals such as cost effectiveness, coverage, connectivity, lifetime and data latency. In this paper, we propose a new strategy to assist in the placement of Relay Nodes (RNs) for a WSN monitoring underground tunnel infrastructure. By applying for the first time an accurate empirical mean path loss propagation model along with a well fitted fading distribution model specifically defined for the tunnel environment, we address the RN placement problem with guaranteed levels of radio link performance. The simulation results show that the choice of appropriate path loss model and fading distribution model for a typical environment is vital in the determination of the number and the positions of RNs. Furthermore, we adapt a two-tier clustering multi-hop framework in which the first tier of the RN placement is modelled as the minimum set cover problem, and the second tier placement is solved using the search-and-find algorithm. The implementation of the proposed scheme is evaluated by simulation, and it lays the foundations for further work in WSN planning for underground tunnel applications. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fiber web is modeled as a three-dimensional random cylindrical fiber network. Nonlinear behavior of fluid flowing through the fiber network is numerically simulated by using the lattice Boltzmann (LB) method. A nonlinear relationship between the friction factor and the modified Reynolds number is clearly observed and analyzed by using the Fochheimer equation, which includes the quadratic term of velocity. We obtain a transition from linear to nonlinear region when the Reynolds numbers are sufficiently high, reflecting the inertial effect of the flows. The simulated permeability of such fiber network has relatively good agreement with the experimental results and finite element simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A useful insight into managerial decision making can be found from simulation of business systems, but existing work on simulation of supply chain behaviour has largely considered non-competitive chains. Where competitive agents have been examined, they have generally had a simple structure and been used for fundamental examination of stability and equilibria rather than providing practical guidance to managers. In this paper, a new agent for the study of competitive supply chain network dynamics is proposed. The novel features of the agent include the ability to select between competing vendors, distribute orders preferentially among many customers, manage production and inventory, and determine price based on competitive behaviour. The structure of the agent is related to existing business models and sufficient details are provided to allow implementation. The agent is tested to demonstrate that it recreates the main results of the existing modelling and management literature on supply chain dynamics. A brief exploration of competitive dynamics is given to confirm that the proposed agent can respond to competition. The results demonstrate that overall profitability for a supply chain network is maximised when businesses operate collectively. It is possible for an individual business to achieve higher profits by adopting a more competitive stance, but the consequence of this is that the overall profitability of the network is reduced. The agent will be of use for a broad range of studies on the long-run effect of management decisions on their network of suppliers and customers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the architecture of a vector-matrix multiplier (MVM) is simulated. The optical design can be made compact by the use of GRIN lenses for the optical fan-in. The intended application area was in storage area networks (SANs) but the concept can be applied to a neural network. © 2011 Allerton Press, Inc.

Relevância:

20.00% 20.00%

Publicador: