990 resultados para chromosome BTA28
Resumo:
Morphological and molecular studies are beginning to distinguish separate evolutionary pathways for colorectal cancer, The serrated pathway encompassing hyperplastic aberrant crypt foci, hyperplastic polyps. mixed polyps, and serrated adenoma is increasingly being linked with genetic alterations, including DNA methylation, DNA microsatellite instability, Ii-ras mutation, and loss of chromosome Ip, The importance of the serrated pathway has been underestimated in terms of its frequency and potential for rapid progression, Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Molecular events in early colorectal cancers (CRCs) have not been well elucidated because of the low incidence of early CRCs in clinical practice. Therefore, we studied 104 sporadic early CRCs with invasion limited to submucosa compared with 116 advanced CRCs. Loss of heterozygosity as well as microsatellite instability (MSI) status was examined. A significantly high frequency of low-level MSI (MSI-L) phenotype was detected in early CRCs (51.0%) compared with advanced CRCs (25.9%; P = 0.0001). In early and advanced CRCs, samples with MSI-L phenotype differed from microsatellite stable (MSS) phenotype with respect to loss of heterozygosity at 1p32 and 8p12-22. MSI-L is a frequent genetic event in early CRCs and may be a novel pathway in colorectal carcinogenesis distinct from both MSI-H and MSS.
Resumo:
To identify possible associations between host genetic factors and the onset of liver fibrosis following Schistosoma japonicum infection, the major histocompatibility class II alleles of 84 individuals living on an island (Jishan) endemic for schistosomiasis japonica in the Poyang Lake Region of Southern China were determined. Forty patients exhibiting advanced schistosomiasis, characterised by extensive liver fibrosis, and 44 age and sex-matched control subjects were assessed for the class II haplotypes HLA-DRBI and HLA-DQB1. Two HLA-DRB1 alleles, HLA-DRB1*0901 (P = 0.012) and *1302 (P = 0.039), and two HLA-DQB1 alleles, HLA-DQB1*0303 (P = 0.012) and *0609 (P = 0.037), were found to be significantly associated with susceptibility to fibrosis. These associated DRB1 and DQB1 alleles are in very strong linkage disequilibrium, with DRB1*0901-DQB1*0303 and DRB1*1302-DQB1*0609 found as: common haplotypes in this population. In contrast, the alleles HLA-DRB1*1501 (P = 0.025) and HLA-DQB 1*0601 (P = 0.022) were found to be associated with resistance to hepatosplenic disease. Moreover, the alleles DQB1*0303 and DRB1*0901 did not increase susceptibility in the presence of DQB1*0601, indicating that DQB1*0601 is dominant over DQB1*0303 and DRB1*0901. The study has thus identified both positive and negative associations between HLA class II alleles and the risk of individuals developing moderate to severe liver fibrosis following schistosome infection. (C) 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Prader-Willi syndrome (PWS) was originally described less than 50 y ago,1 although reference to children with characteristics of the syndrome are to be found in other literature previous to this.2 Until relatively recently the diagnosis was made upon the clinical features as outlined by Holm,3 which include severe muscular hypotonia in the neonatal period leading to feeding difficulties and undernutrition, hypogonadism and later hyperphagia and obesity. Latterly the syndrome has been identified as being associated with an interstitial deletion of the q11-13 region on chromosome 15.4 In the majority of cases the deletion is in the paternally derived chromosome. In the remainder of cases there seems to be a failure to inherit the entire paternal chromosome and as a consequence both the chromosomes inherited are maternal, thus leading to maternal disomy.
Resumo:
Concentrations of follicle-stimulating hormone (FSH) have an important role in multiple ovulation. An association has been reported between mutations in the FSH receptor (FSHR) in a family with Increased twinning frequency. We sequenced the transmembrane region of FSHR (located on chromosome 2) in 21 unrelated mothers of dizygotic twins and found no differences to the published sequence. A linkage study of 183 sister pairs and trios, in which all sisters had given birth to spontaneous dizygotic twins, excluded linkage to this region of chromosome 2. Wa conclude that mutations in FSHR are not a common cause of familial dizygotic twinning.
Resumo:
We observe no evidence of linkage to the region around the PPARG locus in several samples of DZ twins who have been genotyped at multiple markers on chromosome 3 (Fig. 1). Among 199 Australian DZ twins ascertained for a history of wheezing2, mean identity by descent (IBD) sharing at the position of PPARG is 0.463 (99% bootstrapped confidence interval=0.412−0.516). We obtained a similar result with 232 pairs of Australian adolescent DZ twins taking part in a longitudinal study of naevus development3 (0.444, 0.390−0.499), and a set of 125 Australian adult DZ twin pairs assessed for anxiety4 (0.508, 0.435−0.580). A Dutch scan of 160 DZ twin pairs5 obtained slightly more encouraging results (0.553, 0.482−0.587, peak maximum lod score (MLS)=0.57). Pooling all these samples gives 0.477 (0.454−0.512) at the position of PPARG. The test for heterogeneity of sharing between studies was not significant (P=0.10). In the combined dataset, the peak IBD sharing (MLS=0.70) is 50 cM closer to the centromere than PPARG. Finally, in a sample of 203 Australian and New Zealand sister pairs where each had given birth to DZ twins6, sharing across the region is also not increased (0.433). We do not replicate linkage in the populations we study to survival of a twin pregnancy or polyovulation.
Resumo:
1. Improved approaches to screening and diagnosis have revealed primary aldosteronism (PAL) to be much more common than previously thought, with most patients normokalaemic. The spectrum of this disorder has been further broadened by the study of familial varieties. 2. Familial hyperaldosteronism type I (FH-I) is a glucocorticoid-remediable form of PAL caused by the inheritance of an adrenocorticotrophic hormone (ACTH)- regulated, hybrid CYP11B1/CYP11B2 gene. Diagnosis has been greatly facilitated by the advent of genetic testing. The severity of hypertension varies widely in FH-I, even among members of the same family, and has demonstrated relationships with gender, degree of biochemical disturbance and hybrid gene crossover point position. Hormone day curve studies show that the hybrid gene dominates over wild-type CYP11B2 in terms of aldosterone regulation. This may be due, in part, to a defect in wild-type CYP11B2-induced aldosterone production. Control of hypertension in FH-I requires only partial suppression of ACTH and much smaller glucocorticoid doses than previously recommended. 3. Familial hyperaldosteronism type II (FH-II) is not glucocorticoid remediable and is not associated with the hybrid gene mutation. Familial hyperaldosteronism type II is clinically, biochemically and morphologically indistinguishable from apparently non-familial PAL. Linkage studies in one informative family did not show segregation of FH-II with the CYP11B2, AT1 or MEN1 genes, but a genome-wide search has revealed linkage with a locus in chromosome 7. As has already occurred in FH-I, elucidation of causative mutations is likely to facilitate earlier detection of PAL.
Resumo:
Primary aldosteronism (PAL) may be as much as ten times more common than has been traditionally thought, with most patients normokalemic. The study of familial varieties has facilitated a fuller appreciation of the nature and diversity of its clinical, biochemical, morphological and molecular aspects. In familial hyperaldosteronism type I (FH-I), glucocorticoid-remediable PAL is caused by inheritance of an ACTH-regulated, hybrid CYP11B1/CYP11B2 gene. Genetic testing has greatly facilitated diagnosis. Hypertension severity varies widely, demonstrating relationships with gender, affected parent's gender, urinary kallikrein level, degree of biochemical disturbance and hybrid gene crossover point position. Analyses of aldosterone/PRA/cortisol 'day-curves' have revealed that (1) the hybrid gene dominates over wild type CYP11B2 in terms of aldosterone regulation and (2) correction of hypertension in FH-I requires only partial suppression of ACTH, and much smaller glucocorticoid doses than those previously recommended. Familial hyperaldosteronism type II is not glucocorticoid-remediable, and is clinically, biochemically and morphologically indistinguishable from apparently sporadic PAL. In one informative family available for linkage analysis, FH-II does not segregate with either the CYP11B2, AT1 or MEN1 genes, but a genome-wide search has revealed linkage with a locus in chromosome 7. As has already occurred in FH-I, elucidation of causative mutations is likely to facilitate earlier detection of PAL and other curable or specifically treatable forms of hypertension. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Frizzled genes encode a family of Wnt ligand receptors, which have a conserved cysteine-rich Wnt binding domain and include both transmembrane and secreted forms. Work by others has shown that experimental perturbation of Wnt signaling results in aberrant hair formation, hair growth, and hair structure. To date, however, there is no information on the contribution of individual Frizzled proteins to hair development. We now report that Frizzled-3 expression in skin is restricted to the epidermis and to the developing hair follicle. Northern analysis on total mouse skin mRNA revealed a single Frizzled-3 transcript of 3.7 kb. Reverse transcription-polymerase chain reaction and in situ hybridization analysis revealed Frizzled-3 expression in epidermal and hair follicle keratinocytes. Frizzled-3 transcripts are first detected in discrete foci in the developing epidermis of 13 d embryos and later in the hair follicle placodes of 15 d embryos, suggesting a role for this Frizzled isoform in follicle development. In 17 d embryos and id old newborn mice Frizzled-3 expression is limited to suprabasal keratinocytes and is not seen in pelage follicles until 3 d postpartum. In 7 d old neonatal skin, Frizzled-3 is expressed throughout the epidermis and in the outer cell layers of hair follicles. We have also identified the mRNA encoding human Frizzled-3 in epidermal keratinocytes and in the HaCaT keratinocyte cell line. Human Frizzled-3 mRNA encodes a 666 amino acid protein with 97.8% identity to the mouse protein. The human Frizzled-3 gene was mapped using a radiation-hybrid cell line panel to the short arm of chromosome 8 between the markers WI-1172 and WI-8496 near the loci for the Hypotrichosis of Marie Unna and Hairless genes.
Resumo:
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leucoencephalopathy (CADASIL) is a recently described cause of stroke or stroke-like episodes. It is caused by mutations in the Notch3 gene on chromosome 19p. We sought to demonstrate mutations of the Notch3 gene in Australian patients suspected of having CADASIL. Patients from several families were referred to the study. A diagnosis was determined clinically and by neuroimaging. Those suspected of having CADASIL had sequencing of exons 3 and 4 of the Notch3 gene. Eight patients, two of whom were siblings, were suspected of having CADASIL. Five patients (including the siblings) had mutations. Because of strong clustering of Notch3 mutations in CADASIL, this has potential as a reliable test for the disease in Australian patients. (C) 2001 Harcourt Publishers Ltd.
Resumo:
We report a further characterization of the genomic region containing the soybean supernodulation gene NTS-1. We performed a search for new markers linked to NTS-1 by combining DNA amplification fingerprinting (DAF) and bulked segregant analysis (BSA). The search resulted in one cloned polymorphism (B44-456) linked in trans, 8.5cM from the locus. Southern hybridization showed duplication of the B44-456 sequence in the soybean genome. Additionally, a DNA database search revealed one Arabidopsis thaliana genomic clone from chromosome I possessing 62% homology to the B44-456 marker. A relatively low number of polymorphisms were identified by several PCR marker technologies for this soybean genomic region, providing an additional support for its highly conserved and/or duplicated organization.
Resumo:
The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G, arrest. Here we show that the ATM-dependent activation of Chk2 by gamma- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells, interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1, Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2.
Resumo:
Using differential display-polymerase chain reaction, we identified a novel gene sequence, designated solid tumor-associated gene 1 (STAG1), that is upregulated in renal cell carcinoma (RCC). The full-length cDNA (4839 bp) encompassed the recently reported androgen-regulated prostatic cDNA PMEPA1 and so we refer to this gene as STAG1/PMEPA1, Two STAG1/PMEPA1 mRNA transcripts of approximately 2.7 an 5 kb, with identical coding regions but variant 3' untranslated regions, were predominantly expressed in normal prostate tissue and at lower levels in the ovary. The expression of this gene was upregulated in 87% of RCC samples and also was upregulated in stomach and rectal adenocarcinomas. In contrast, STAG1/PMEPA1 expression was barely detectable in leukemia and lymphoma samples, Analysis of expressed sequence tag databases showed that STAG1/PMEPA1 also was expressed in pancreatic, endometrial, and prostatic adenocarcinomas. The STAG1/PMEPA1 cDNA encodes a 287-amino-acid protein containing a putative transmembrane domain and motifs that suggest that it may bind src homology 3- and tryptophan tryptophan domain-containing proteins. This protein shows 67% identity to the protein encoded by the chromosome 18 open reading frame 1 gene. Translation of STAG1/PMEPA1 mRNA in vitro showed two products of 36 and 39 kDa, respectively, suggesting that translation may initiate at more than one site. Comparison to genomic clones showed that STAG1/PMEPA1 was located on chromosome 20q13 between microsatellite markers D20S183 and D20S173 and spanned four exons and three introns. The upregulation of this gene in several solid tumors indicated that it may play an important role in tumorigenesis. (C) 2001 Wiley-Liss, Inc.
Resumo:
GABAergic systems have been implicated in the pathogenesis of anxiety, depression and insomnia. These symptoms are part of the core and comorbid psychiatric disturbances in post-traumatic stress disorder (PTSD) In a sample of Caucasian male PTSD patients, dinucleotide repeat polymorphisms of the GABAA receptor beta3 subunit gene were compared to scores on the General Health Questionnaire-28 (GHQ). As the major allele at this gene locus (GABRB3) was GI, the alleles were divided into GI and non-GI groups. On the total score of the GHQ, which comprises the somatic symptoms, anxiety/insomnia, social dysfunction and depression subscales, patients with the GI non-GI genotype had a significantly higher score when compared to either the G1G1 genotype (alpha = 0.01) or the non-GI non-GI genotype (alpha = 0.05). No significant difference was found between the G1G1 and non-Gl non-G1 genotypes. When the GI non-G1 heterozygotes were compared to the combined G1G1 and non-GI non-GI homozygotes, a significantly higher total GHQ score was found in the heterozygotes (P = 0.002). These observations suggest a heterosis effect. Further analysis of GHQ subscale scores showed that heterozygotes compared to the combined homozygotes had higher scores on the somatic symptoms (P = 0.006), anxiety/insomnia (P = 0.003), social dysfunction (P = 0.054) and depression (P = 0.004) subscales. In conclusion, the present study indicates that in a population of PTSD patients, heterozygosity of the GABRB3 major (GI) allele confers higher levels of somatic symptoms, anxiety/insomnia, social dysfunction and depression than found in homozygosity. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.