991 resultados para chemokine receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) has widespread growth effects, and in some tissues proliferation is associated with the nuclear localization of EGF and epidermal growth factor receptor (EGFR). In the thyroid, EGF promotes growth but differs from thyrotropin (TSH) in inhibiting rather than stimulating functional parameters. We have therefore studied the occurrence and cellular distribution of EGF and EGFR in normal thyroid, in Graves' disease, where growth is mediated through the thyrotropin receptor (TSHR), and in a variety of human thyroid tumors. In the normal gland the staining was variable, but largely cytoplasmic, for both EGF and EGFR. In Graves' disease there was strong cytoplasmic staining for both EGF and EGFR, with frequent positive nuclei. Nuclear positivity for EGF and particularly for EGFR was also a feature of both follicular adenomas and follicular carcinomas. Interestingly, nuclear staining was almost absent in papillary carcinomas. These findings document for the first time the presence of nuclear EGF and EGFR in thyroid. Their predominant occurrence in tissues with increased growth (Graves' disease, follicular adenoma, and carcinoma) may indicate that nuclear EGF and EGFR play a role in growth regulation in these conditions. The absence of nuclear EGF and EGFR in papillary carcinomas would suggest that the role played by EGF in growth control differs between papillary carcinoma and follicular adenomas/carcinomas of the thyroid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptor (GPR)109A (HM74A) is a G(i) protein-coupled receptor, which is activated by nicotinic acid (NA), a lipid-lowering drug. Here, we demonstrate that mature human neutrophils, but not eosinophils, express functional GPR109A receptors. The induction of the GPR109A gene appears to occur late in the terminal differentiation process of neutrophils, since a mixed population of immature bone marrow neutrophils did not demonstrate evidence for its expression. NA accelerated apoptosis in cultured neutrophils in a concentration-dependent manner, as assessed by phosphatidylserine redistribution, caspase-3 activation, and DNA fragmentation assays. The pro-apoptotic effect of NA was abolished by pertussis toxin, which was used to block G(i) proteins, suggesting a receptor-mediated mechanism. Activation of GPR109A by NA resulted in decreased levels of cyclic adenosine monophosphate (cAMP), most likely due to G(i)-mediated inhibition of adenylyl cyclase activity. NA-induced apoptosis was reversed by the addition of cell-permeable cAMP, pointing to the possibility that reduced cAMP levels promote apoptosis in neutrophils. Distal mechanism involved in this process may include the post-translational modification of members of the Bcl-2 family, such as dephosphorylation of pro-apoptotic Bad and antiapoptotic Mcl-1 proteins. Taken together, following maturation in the bone marrow, neutrophils express functional GPR109A receptors, which might be involved in the regulation of neutrophil numbers. Moreover, this study identified a new cellular target of NA and future drugs activating GPR109A receptors, the mature neutrophil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Peptide receptors are frequently overexpressed in human tumors, allowing receptor-targeted scintigraphic imaging and therapy with radiolabeled peptide analogues. Neuropeptide Y (NPY) receptors are new candidates for these applications, based on their high expression in specific cancers. Because NPY receptors are expressed in selected sarcoma cell lines and because novel treatment options are needed for sarcomas, this study assessed the NPY receptor in primary human sarcomas. EXPERIMENTAL DESIGN: Tumor tissues of 88 cases, including Ewing sarcoma family of tumors (ESFT), synovial sarcomas, osteosarcomas, chondrosarcomas, liposarcomas, angiosarcomas, rhabdomyosarcomas, leiomyosarcomas, and desmoid tumors, were investigated for NPY receptor protein with in vitro receptor autoradiography using (125)I-labeled NPY receptor ligands and for NPY receptor mRNA expression with in situ hybridization. RESULTS: ESFT expressed the NPY receptor subtype Y1 on tumor cells in remarkably high incidence (84%) and density (mean, 5,314 dpm/mg tissue). Likewise, synovial sarcomas expressed Y1 on tumor cells in high density (mean, 7,497 dpm/mg; incidence, 40%). The remaining tumors expressed NPY receptor subtypes Y1 or Y2 at lower levels. Moreover, many of the sarcomas showed Y1 expression on intratumoral blood vessels. In situ hybridization for Y1 mRNA confirmed the autoradiography results. CONCLUSIONS: NPY receptors are novel molecular markers for human sarcomas. Y1 may inhibit growth of specific sarcomas, as previously shown in an in vivo mouse model of human ESFT. The high Y1 expression on tumor cells of ESFT and synovial sarcomas and on blood vessels in many other sarcomas represents an attractive basis for an in vivo tumor targeting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide receptors are often overexpressed in tumors, and they may be targeted in vivo. We evaluated neuropeptide Y (NPY) receptor expression in 131 primary human brain tumors, including gliomas, embryonal tumors, meningiomas, and pituitary adenomas, by in vitro receptor autoradiography using the 125I-labeled NPY receptor ligand peptide YY in competition with NPY receptor subtype-selective analogs. Receptor functionality was investigated in selected cases using [35S]GTPgammaS-binding autoradiography. World Health Organization Grade IV glioblastomas showed a remarkably high expression of the NPY receptor subtype Y2 with respect to both incidence (83%) and density (mean, 4,886 dpm/mg tissue); astrocytomas World Health Organization Grades I to III and oligodendrogliomas also exhibited high Y2 incidences but low Y2 densities. In glioblastomas, Y2 agonists specifically stimulated [35S]GTPgammaS binding, suggesting that tumoral Y2 receptors were functional. Furthermore, nonneoplastic nerve fibers containing NPY peptide were identified in glioblastomas by immunohistochemistry. Medulloblastomas, primitive neuroectodermal tumors of the CNS, and meningiomas expressed Y1 and Y2 receptor subtypes in moderate incidence and density. In conclusion, Y2 receptors in glioblastomas that are activated by NPY originating from intratumoral nerve fibers might mediate functional effects on the tumor cells. Moreover, identification of the high expression of NPY receptors in high-grade gliomas and embryonal brain tumors provides the basis for in vivo targeting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastrointestinal peptide hormone receptors, like somatostatin receptors, are often overexpressed in human cancer, allowing receptor-targeted tumor imaging and therapy. A novel candidate for these applications is the secretin receptor recently identified in pancreatic and cholangiocellular carcinomas. In the present study, secretin receptors were assessed in a non-gastrointestinal tissue, the human lung. Non-small-cell lung cancers (n=26), small-cell lung cancers (n=10), bronchopulmonary carcinoid tumors (n=29), and non-neoplastic lung (n=46) were investigated for secretin receptor protein expression with in vitro receptor autoradiography, using (125)I-[Tyr(10)] rat secretin and for secretin receptor transcripts with RT-PCR. Secretin receptor protein expression was found in 62% of bronchopulmonary carcinoids in moderate to high density, in 12% of non-small cell lung cancers in low density, but not in small cell lung cancers. In tumors found to be secretin receptor positive by autoradiography, RT-PCR revealed transcripts for the wild-type secretin receptor and for novel secretin receptor splice variants. In the non-neoplastic lung, secretin receptor protein expression was observed in low density along the alveolar septa in direct tumor vicinity in cases of acute inflammation, but not in histologically normal lung. In the autoradiographically positive peritumoral lung, RT-PCR showed transcripts for the wild-type secretin receptor and for a secretin receptor spliceoform different from those occurring in lung and gut tumors. In conclusion, secretin receptors are new markers for bronchopulmonary carcinoid tumors, and represent the molecular basis for an in vivo targeting of carcinoid tumors for diagnosis and therapy. Furthermore, secretin receptors may play a role in peritumoral lung pathophysiology. Secretin receptor mis-splicing specifically occurs in tumor and non-tumor lung pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection with Shiga-toxin producing Escherichia coli (STEC) may result in the development of the haemolytic-uremic syndrome (HUS), the main cause of acute renal failure in children. While O157:H7 STEC are associated with large outbreaks of HUS, it is difficult to predict whether a non-O157:H7 isolate can be pathogenic for humans. The mucosal innate immune response plays a central role in the pathogenesis of HUS; therefore, we compared the induction of IL-8 and CCL20 in human colon epithelial cells infected with strains belonging to different serotypes, isolated from cattle or from HUS patients. No correlation was observed between strain virulence and chemokine gene expression. Rather, the genetic background of the strains seems to determine the chemokine gene expression profile. Investigating the contribution of different bacterial factors in this process, we show that the type III secretion system of O157:H7 bacteria, but not the intimate adhesion, is required to stimulate the cells. In addition, H7, H10, and H21 flagellins are potent inducers of chemokine gene expression when synthesized in large amount.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent identification of a cellular balance between ceramide and sphingosine 1-phosphate (S1P) as a critical regulator of cell growth and death has stimulated increasing research effort to clarify the role of ceramide and S1P in various diseases associated with dysregulated cell proliferation and apoptosis. S1P acts mainly, but not exclusively, by binding to and activating specific cell surface receptors, the so-called S1P receptors. These receptors belong to the class of G protein-coupled receptors that constitute five subtypes, denoted as S1P(1)-S1P(5), and represent attractive pharmacological targets to interfere with S1P action. Whereas classical receptor antagonists will directly block S1P action, S1P receptor agonists have also proven useful, as recently shown for the sphingolipid-like immunomodulatory substance FTY720. When phosphorylated by sphingosine kinase to yield FTY720 phosphate, it acutely acts as an agonist at S1P receptors, but upon prolonged presence, it displays antagonistic activity by specifically desensitizing the S1P(1) receptor subtype. This commentary will cover the most recent developments in the field of S1P receptor pharmacology and highlights the potential therapeutic benefit that can be expected from these novel drug targets in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: We analysed the production of soluble tumour necrosis factor receptors sTNFR1 and sTNFR2 at sites of inflammation and measured their plasma concentrations to evaluate them as biological markers of disease activity. METHODS: Plasma samples of 35 patients with Behçet's disease (BD) were collected prospectively at monthly intervals and grouped for inactive disease, active BD without arthritis, and active BD with arthritis. sTNFR1 and sTNFR2 concentrations were measured using immunoassays and compared with other biological disease activity parameters. Plasma sTNFR levels were compared to synovial fluid (SF) levels in seven patients. Sixteen tissue samples of mucocutaneous lesions were stained for TNFR2 expression by immunohistochemistry. RESULTS: sTNFR1 and sTNFR2 were found at increased plasma concentrations in active BD, with the highest concentration in active BD with arthritis (p<0.001). Concentrations of both sTNFRs were at least three times higher in SF of arthritic joints than in the corresponding plasma samples (p = 0.025). A change of more than 1 ng/mL of sTNFR2 plasma concentrations correlated with a concordant change in arthritic activity (96% confidence interval). Sensitivity to change was superior to that of sTNFR1, and other biological disease activity parameters such as erythrocyte sedimentation rate (ESR), immunoglobulin (Ig)G, IgA, and interleukin (IL)-10 plasma concentrations. A strong staining for TNFR2 was found in mucocutaneous lesions, where mast cells were identified as the major source for this receptor. CONCLUSIONS: This longitudinal study demonstrates that sTNFR2 plasma concentrations are closely linked with active BD, and especially with arthritis. Taken together with the expression of TNFR molecules in mast cells of mucocutaneous lesions, our results indicate a fundamental role for the TNF/TNFR pathway in BD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmigration through the liver endothelium is a prerequisite for the homeostatic balance of intrahepatic T cells and a key regulator of inflammatory processes within the liver. Extravasation into the liver parenchyma is regulated by the distinct expression patterns of adhesion molecules and chemokines and their receptors on the lymphocyte and endothelial cell surface. In the present study, we investigated whether liver sinusoidal endothelial cells (LSEC) inhibit or support the chemokine-driven transmigration and differentially influence the transmigration of pro-inflammatory or anti-inflammatory CD4(+) T cells, indicating a mechanism of hepatic immunoregulation. Finally, the results shed light on the molecular mechanisms by which LSEC modulate chemokine-dependent transmigration. LSEC significantly enhanced the chemotactic effect of CXC-motif chemokine ligand 12 (CXCL12) and CXCL9, but not of CXCL16 or CCL20, on naive and memory CD4(+) T cells of a T helper 1, T helper 2, or interleukin-10-producing phenotype. In contrast, brain and lymphatic endothelioma cells and ex vivo isolated lung endothelia inhibited chemokine-driven transmigration. As for the molecular mechanisms, chemokine-induced activation of LSEC was excluded by blockage of G(i)-protein-coupled signaling and the use of knockout mice. After preincubation of CXCL12 to the basal side, LSEC took up CXCL12 and enhanced transmigration as efficiently as in the presence of the soluble chemokine. Blockage of transcytosis in LSEC significantly inhibited this effect, and this suggested that chemokines taken up from the basolateral side and presented on the luminal side of endothelial cells trigger T cell transmigration. CONCLUSION: Our findings demonstrate a unique capacity of LSEC to present chemokines to circulating lymphocytes and highlight the importance of endothelial cells for the in vivo effects of chemokines. Chemokine presentation by LSEC could provide a future therapeutic target for inhibiting lymphocyte immigration and suppressing hepatic inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the discovery that Delta 9-tetrahydrocannabinol and related cannabinoids from Cannabis sativa L. act on specific physiological receptors in the human body and the subsequent elucidation of the mammalian endogenous cannabinoid system, no other natural product class has been reported to mimic the effects of cannabinoids. We recently found that N-alkyl amides from purple coneflower (Echinacea spp.) constitute a new class of cannabinomimetics, which specifically engage and activate the cannabinoid type-2 (CB2) receptors. Cannabinoid type-1 (CB1) and CB2 receptors belong to the family of G protein-coupled receptors and are the primary targets of the endogenous cannabinoids N-arachidonoyl ethanolamine and 2-arachidonoyl glyerol. CB2 receptors are believed to play an important role in distinct pathophysiological processes, including metabolic dysregulation, inflammation, pain, and bone loss. CB2 receptors have, therefore, become of interest as new targets in drug discovery. This review focuses on N-alkyl amide secondary metabolites from plants and underscores that this group of compounds may provide novel lead structures for the development of CB2-directed drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeated exposure to psychomotor stimulants produces a striking behavioral syndrome involving repetitive, stereotypic behaviors that occur if an additional exposure to the stimulant is experienced. The same stimulant exposure produces specific alterations in gene expression patterns in the striatum. To identify the dopamine receptor subtypes required for the parallel expression of these acquired neural and behavioral responses, we treated rats with different D1-class and D2-class dopamine receptor agonists and compared the responses of drug-naive rats with those of rats given previous intermittent treatment with cocaine. In rats exposed to repeated cocaine treatment, the effects of a subsequent challenge treatment with either a D1-class agonist (SKF 81297) or a D2-class agonist (quinpirole) were not significantly different from those observed in drug-naive animals: the drugs administered singly did not induce robust stereotyped motor behaviors nor produce significantly striosome-predominant expression of early genes in the striatum. In contrast, challenge treatment with the D1-class and D2-class agonists in combination led to marked and correlated increases in stereotypy and striosome-predominant gene expression in the striatum. Thus, immediately after repeated psychomotor stimulant exposure, only the concurrent activation of D1 and D2 receptor subclasses evoked expression of the neural and behavioral phenotypes acquired through repeated cocaine exposure. These findings suggest that D1-D2 dopamine receptor synergisms underlie the coordinate expression of both network-level changes in basal ganglia activation patterns and the repetitive and stereotypic motor response patterns characteristic of psychomotor stimulant sensitization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of adenosine A2a receptors (A2aR) in the mammalian striatum is well known. In contrast the exact distribution of A2aR in other regions of the central nervous system remains unclear. The aim of this study was to investigate the A2aR gene expression in the rat olfactory bulb and spinal cord, two regions which are seldom included in mapping studies. Secondly, we compared the A2aR expression in the rat and in the mouse brain. Hybridization histochemistry was performed with an S35-labelled radioactive oligonucleotide probe. The results show strong expression of A2aR in the mouse and rat striatum in accordance with previous reports. In the olfactory bulb a weak but specific expression of A2aR was found in the granular cell layer in both species. In contrast, no significant expression of the A2aR gene was observed in other parts of the brain or the rat spinal cord. The presence of the A2aR in the mammalian olfactory bulb suggests a functional role for this receptor in olfaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumoral gastrin-releasing peptide (GRP) receptors are potential targets for diagnosis and therapy using radiolabeled or cytotoxic GRP analogs. GRP-receptor overexpression has been detected in endocrine-related cancer cells and, more recently, also in the vascular bed of selected tumors. More information on vascular GRP-receptors in cancer is required to asses their potential for vascular targeting applications. Therefore, frequent human cancers (n = 368) were analyzed using in vitro GRP-receptor autoradiography on tissue sections with the (125)I-[Tyr(4)]-bombesin radioligand and/or the universal radioligand (125)I-[d-Tyr(6), beta-Ala(11), Phe(13), Nle(14)]-bombesin(6-14). GRP-receptor expressing vessels were evaluated in each tumor group for prevalence, quantity (vascular score), and GRP-receptor density. Prevalence of vascular GRP-receptors was variable, ranging from 12% (prostate cancer) to 92% (urinary tract cancer). Different tumor types within a given site had divergent prevalence of vascular GRP-receptors (e.g. lung: small cell cancer: 0%; adenocarcinoma: 59%; squamous carcinoma: 83%). Also the vascular score varied widely, with the highest score in urinary tract cancer (1.69), moderate scores in lung (0.91), colon (0.88), kidney (0.84), and biliary tract (0.69) cancers and low scores in breast (0.39) and prostate (0.14) cancers. Vascular GRP-receptors were expressed in the muscular vessel wall in moderate to high densities. Normal non-neoplastic control tissues from these organs lacked vascular GRP-receptors. In conclusion, tumoral vessels in all evaluated sites express GRP-receptors, suggesting a major biological function of GRP-receptors in neovasculature. Vascular GRP-receptor expression varies between the tumor types indicating tumor-specific mechanisms in their regulation. Urinary tract cancers express vascular GRP-receptors so abundantly, that they are promising candidates for vascular targeting applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The successful peptide receptor imaging of tumors, as exemplified for somatostatin receptors, is based on the overexpression of peptide receptors in selected tumors and the high-affinity binding to these tumors of agonist radioligands that are subsequently internalized into the tumor cells in which they accumulate. Although in vitro studies have shown ample evidence that the ligand-receptor complex is internalized, in vivo evidence of agonist-induced internalization of peptide receptors, such as somatostatin receptors, is missing. METHODS: Rats subcutaneously transplanted with the somatostatin receptor subtype 2 (sst(2))-expressing AR42J tumor cells were treated with intravenous injections of various doses of the sst(2) agonist [Tyr(3), Thr(8)]-octreotide (TATE) or of the sst(2) antagonist 1,4,7,10-tetraazacyclododecane-N,N',N'',N''',-tetraacetic acid (DOTA)-Bass and were sacrificed at various times ranging from 2.5 min to 24 h after injection. The tumors and pancreas were then removed from each animal. All tissue samples were processed for sst(2) immunohistochemistry using sst(2)-specific antibodies. RESULTS: Compared with the sst(2) receptors in untreated animals, which localized at the plasma membrane in pancreatic and AR42J tumor cells, the sst(2) receptors in treated animals are detected intracellularly after an intravenous injection of the agonist TATE. Internalization is fast, as the receptors are already internalizing 2.5 min after TATE injection. The process is extremely efficient, as most of the cell surface receptors internalize into the cell and are found in endosomelike structures after TATE injection. The internalization is most likely reversible, because 24 h after injection the receptors are again found at the cell surface. The process is also agonist-dependent, because internalization is seen with high-affinity sst(2) agonists but not with high-affinity sst(2) antagonists. The same internalization properties are seen in pancreatic and AR42J tumor cells. They can further be confirmed in vitro in human embryonic kidney-sst(2) cells, with an immunofluorescence microscopy-based sst(2) internalization assay. CONCLUSION: These animal data strongly indicate that the process of in vivo sst(2) internalization after agonist stimulation is fast, extremely efficient, and fully functional under in vivo conditions in neoplastic and physiologic sst(2) target tissues. This molecular process is, therefore, likely to be responsible for the high and long-lasting uptake of sst(2) radioligands seen in vivo in sst(2)-expressing tumors.