982 resultados para certificate signatures


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To define the biology driving the aggressive nature of breast cancer arising in young women. EXPERIMENTAL DESIGN: Among 784 patients with early stage breast cancer, using prospectively-defined, age-specific cohorts (young or=65 years), 411 eligible patients (n = 200or=65 years) with clinically-annotated Affymetrix microarray data were identified. GSEA, signatures of oncogenic pathway deregulation and predictors of chemotherapy sensitivity were evaluated within the two age-defined cohorts. RESULTS: In comparing deregulation of oncogenic pathways between age groups, a higher probability of PI3K (p = 0.006) and Myc (p = 0.03) pathway deregulation was observed in breast tumors arising in younger women. When evaluating unique patterns of pathway deregulation, a low probability of Src and E2F deregulation in tumors of younger women, concurrent with a higher probability of PI3K, Myc, and beta-catenin, conferred a worse prognosis (HR = 4.15). In contrast, a higher probability of Src and E2F pathway activation in tumors of older women, with concurrent low probability of PI3K, Myc and beta-catenin deregulation, was associated with poorer outcome (HR = 2.7). In multivariate analyses, genomic clusters of pathway deregulation illustrate prognostic value. CONCLUSION: Results demonstrate that breast cancer arising in young women represents a distinct biologic entity characterized by unique patterns of deregulated signaling pathways that are prognostic, independent of currently available clinico-pathologic variables. These results should enable refinement of targeted treatment strategies in this clinically challenging situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective. METHODS AND RESULTS: Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy. CONCLUSIONS: Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB) can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI). However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79-100%) compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16-43%), suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Scale-invariant neuronal avalanches have been observed in cell cultures and slices as well as anesthetized and awake brains, suggesting that the brain operates near criticality, i.e. within a narrow margin between avalanche propagation and extinction. In theory, criticality provides many desirable features for the behaving brain, optimizing computational capabilities, information transmission, sensitivity to sensory stimuli and size of memory repertoires. However, a thorough characterization of neuronal avalanches in freely-behaving (FB) animals is still missing, thus raising doubts about their relevance for brain function. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we employed chronically implanted multielectrode arrays (MEA) to record avalanches of action potentials (spikes) from the cerebral cortex and hippocampus of 14 rats, as they spontaneously traversed the wake-sleep cycle, explored novel objects or were subjected to anesthesia (AN). We then modeled spike avalanches to evaluate the impact of sparse MEA sampling on their statistics. We found that the size distribution of spike avalanches are well fit by lognormal distributions in FB animals, and by truncated power laws in the AN group. FB data surrogation markedly decreases the tail of the distribution, i.e. spike shuffling destroys the largest avalanches. The FB data are also characterized by multiple key features compatible with criticality in the temporal domain, such as 1/f spectra and long-term correlations as measured by detrended fluctuation analysis. These signatures are very stable across waking, slow-wave sleep and rapid-eye-movement sleep, but collapse during anesthesia. Likewise, waiting time distributions obey a single scaling function during all natural behavioral states, but not during anesthesia. Results are equivalent for neuronal ensembles recorded from visual and tactile areas of the cerebral cortex, as well as the hippocampus. CONCLUSIONS/SIGNIFICANCE: Altogether, the data provide a comprehensive link between behavior and brain criticality, revealing a unique scale-invariant regime of spike avalanches across all major behaviors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: West Virginia has the worst oral health in the United States, but the reasons for this are unclear. This pilot study explored the etiology of this disparity using culture-independent analyses to identify bacterial species associated with oral disease. METHODS: Bacteria in subgingival plaque samples from twelve participants in two independent West Virginia dental-related studies were characterized using 16S rRNA gene sequencing and Human Oral Microbe Identification Microarray (HOMIM) analysis. Unifrac analysis was used to characterize phylogenetic differences between bacterial communities obtained from plaque of participants with low or high oral disease, which was further evaluated using clustering and Principal Coordinate Analysis. RESULTS: Statistically different bacterial signatures (P<0.001) were identified in subgingival plaque of individuals with low or high oral disease in West Virginia based on 16S rRNA gene sequencing. Low disease contained a high frequency of Veillonella and Streptococcus, with a moderate number of Capnocytophaga. High disease exhibited substantially increased bacterial diversity and included a large proportion of Clostridiales cluster bacteria (Selenomonas, Eubacterium, Dialister). Phylogenetic trees constructed using 16S rRNA gene sequencing revealed that Clostridiales were repeated colonizers in plaque associated with high oral disease, providing evidence that the oral environment is somehow influencing the bacterial signature linked to disease. CONCLUSIONS: Culture-independent analyses identified an atypical bacterial signature associated with high oral disease in West Virginians and provided evidence that the oral environment influenced this signature. Both findings provide insight into the etiology of the oral disparity in West Virginia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH(4) L(-1) (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L(-1) (P < 0.05; n = 34). Average δ(13)C-CH(4) values of dissolved methane in shallow groundwater were significantly less negative for active than for nonactive sites (-37 ± 7‰ and -54 ± 11‰, respectively; P < 0.0001). These δ(13)C-CH(4) data, coupled with the ratios of methane-to-higher-chain hydrocarbons, and δ(2)H-CH(4) values, are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby. In contrast, lower-concentration samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/thermogenic methane source. We found no evidence for contamination of drinking-water samples with deep saline brines or fracturing fluids. We conclude that greater stewardship, data, and-possibly-regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationships between O2 and δ15N NO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N:18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32 % of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15N NO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs. © Author(s) 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gliomagenesis is driven by a complex network of genetic alterations and while the glioma genome has been a focus of investigation for many years; critical gaps in our knowledge of this disease remain. The identification of novel molecular biomarkers remains a focus of the greater cancer community as a method to improve the consistency and accuracy of pathological diagnosis. In addition, novel molecular biomarkers are drastically needed for the identification of targets that may ultimately result in novel therapeutics aimed at improving glioma treatment. Through the identification of new biomarkers, laboratories will focus future studies on the molecular mechanisms that underlie glioma development. Here, we report a series of genomic analyses identifying novel molecular biomarkers in multiple histopathological subtypes of glioma and refine the classification of malignant gliomas. We have completed a large scale analysis of the WHO grade II-III astrocytoma exome and report frequent mutations in the chromatin modifier, alpha thalassemia mental retardation x-linked (ATRX), isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), and mutations in tumor protein 53 (TP53) as the most frequent genetic mutations in low grade astrocytomas. Furthermore, by analyzing the status of recurrently mutated genes in 363 brain tumors, we establish that highly recurrent gene mutational signatures are an effective tool in stratifying homogeneous patient populations into distinct groups with varying outcomes, thereby capable of predicting prognosis. Next, we have established mutations in the promoter of telomerase reverse transcriptase (TERT) as a frequent genetic event in gliomas and in tissues with low rates of self renewal. We identify TERT promoter mutations as the most frequently mutated gene in primary glioblastoma. Additionally, we show that TERT promoter mutations in combination with IDH1 and IDH2 mutations are able to delineate distinct clinical tumor cohorts and are capable of predicting median overall survival more effectively than standard histopathological diagnosis alone. Taken together, these data advance our understanding of the genetic alterations that underlie the transformation of glial cells into neoplasms and we provide novel genetic biomarkers and multi – gene mutational signatures that can be utilized to refine the classification of malignant gliomas and provide opportunity for improved diagnosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olfactory cues play an integral, albeit underappreciated, role in mediating vertebrate social and reproductive behaviour. These cues fluctuate with the signaller's hormonal condition, coincident with and informative about relevant aspects of its reproductive state, such as pubertal onset, change in season and, in females, timing of ovulation. Although pregnancy dramatically alters a female's endocrine profiles, which can be further influenced by fetal sex, the relationship between gestation and olfactory cues is poorly understood. We therefore examined the effects of pregnancy and fetal sex on volatile genital secretions in the ring-tailed lemur (Lemur catta), a strepsirrhine primate possessing complex olfactory mechanisms of reproductive signalling. While pregnant, dams altered and dampened their expression of volatile chemicals, with compound richness being particularly reduced in dams bearing sons. These changes were comparable in magnitude with other, published chemical differences among lemurs that are salient to conspecifics. Such olfactory 'signatures' of pregnancy may help guide social interactions, potentially promoting mother-infant recognition, reducing intragroup conflict or counteracting behavioural mechanisms of paternity confusion; cues that also advertise fetal sex may additionally facilitate differential sex allocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study combines for the first time two major approaches to understanding the function and structure of neural circuits: large-scale multielectrode recordings, and confocal imaging of labeled neurons. To achieve this end, we develop a novel approach to the central problem of anatomically identifying recorded cells, based on the electrical image: the spatiotemporal pattern of voltage deflections induced by spikes on a large-scale, high-density multielectrode array. Recordings were performed from identified ganglion cell types in the macaque retina. Anatomical images of cells in the same preparation were obtained using virally transfected fluorescent labeling or by immunolabeling after fixation. The electrical image was then used to locate recorded cell somas, axon initial segments, and axon trajectories, and these signatures were used to identify recorded cells. Comparison of anatomical and physiological measurements permitted visualization and physiological characterization of numerically dominant ganglion cell types with high efficiency in a single preparation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the global oceanic distribution and recognized biogeochemical impact of coccolithoviruses (EhV), their diversity remains poorly understood. Here we employed a metagenomic approach to study the occurrence and progression of natural EhV community genomic variability. Analysis of EhV metagenomes from the early and late stages of an induced bloom led to three main discoveries. First, we observed resilient and specific genomic signatures in the EhV community associated with the Norwegian coast, which reinforce the existence of limitations to the capacity of dispersal and genomic exchange among EhV populations. Second, we identified a hyper-variable region (approximately 21 kbp long) in the coccolithovirus genome. Third, we observed a clear trend for EhV relative amino-acid diversity to reduce from early to late stages of the bloom. This study validated two new methodological combinations, and proved very useful in the discovery of new genomic features associated with coccolithovirus natural communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the global oceanic distribution and recognised biogeochemical impact of coccolithoviruses (EhV), their diversity remains poorly understood. Here we employed a metagenomic approach to study the occurrence and progression of natural EhV community genomic variability. Analysis of EhV metagenomes from the early and late stages of an induced bloom led to three main discoveries. First, we observed resilient and specific genomic signatures in the EhV community associated with the Norwegian coast, which reinforce the existence of limitations to the capacity of dispersal and genomic exchange among EhV populations. Second, we identified a hyper-variable region (approximately 21kbp long) in the coccolithovirus genome. Third, we observed a clear trend for EhV relative amino-acid diversity to reduce from early to late stages of the bloom. This study validated two new methodological combinations, and proved very useful in the discovery of new genomic features associated with coccolithovirus natural communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of a high resolution high performance liquid chromatography-mass spectrometry method to the study of a microbial mat system has permitted the identification of a greater number of pigments derived from green bacteria than reported in a previous study. Although the green bacteria found in the mat were identified as Chloroflexus-like, bacteriochlorophylls and bacteriophaeophytins c that can be attributed to Chloroflexaceae on the basis of literature reports account for less than 10% of the pigments derived from green bacteria in the mat. Analysis of the bacteriochlorophylls and bacteriophaeophytins c and d using atmospheric pressure chemical ionisation-liquid chromatography-tandem mass spectrometry reveals complex depth profiles, signalling inputs from a number of organisms. The pigment compositions provide evidence for green bacteria living in close proximity to the living cyanobacterial mat. Depth profiles of pigments derived from green, purple and cyanobacteria indicate that the remnants of mats present in the deeper part of the section contain a record dominated by signatures from anoxygenic photoautotrophs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There have been numerous recent observations of changes in the behavior and dynamics of migratory bird populations, but the plasticity of the migratory trait and our inability to track small animals over large distances have hindered investigation of the mechanisms behind migratory change. We used habitat-specific stable isotope signatures to show that recently evolved allopatric wintering populations of European blackcaps Sylvia atricapilla pair assortatively on their sympatric breeding grounds. Birds wintering further north also produce larger clutches and fledge more young. These findings describe an important process in the evolution of migratory divides, new migration routes, and wintering quarters. Temporal segregation of breeding is a way in which subpopulations of vertebrates may become isolated in sympatry.