947 resultados para cell wall formation
Resumo:
Candida albicans is a pathogen commonly infecting patients who receive immunosuppressive drug therapy, long-term catheterization, or those who suffer from acquired immune deficiency syndrome (AIDS). The major factor accountable for pathogenicity of C. albicans is host immune status. Various virulence molecules, or factors, of are also responsible for the disease progression. Virulence proteins are published in public databases but they normally lack detailed functional annotations. We have developed CandiVF, a specialized database of C. albicans virulence factors (http://antigen.i2r.a-star.edu.sg/Templar/DB/CandiVF/) to facilitate efficient extraction and analysis of data aimed to assist research on immune responses, pathogenesis, prevention, and control of candidiasis. CandiVF contains a large number of annotated virulence proteins, including secretory, cell wall-associated, membrane, cytoplasmic, and nuclear proteins. This database has in-built bioinformatics tools including keyword and BLAST search, visualization of 3D-structures, HLA-DR epitope prediction, virulence descriptors, and virulence factors ontology.
Resumo:
The plant antimicrobial peptide MiAMP1 from Macadamia integrifolia and the yeast killer toxin peptide WmKT from Williopsis mrakii are structural homologues. Comparative studies of yeast mutants were performed to test their sensitivity to these two antimicrobial peptides. No differences in susceptibility to MiAMP1 were detected between wild-type and several WmKT-resistant mutant yeast strains. A yeast mutant MT1, resistant to MiAMP1 but unaffected in its susceptibility to plant defensins and hydrogen peroxide, also did not show enhanced tolerance towards WmKT. It is therefore probable that the Greek key beta-barrel structure shared by MiAMP1 and WmKT provides a robust structural framework ensuring stability for the two proteins but that the specific action of the peptides depends on other motifs. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Moisture transport and dimensional change during wood drying or wetting processes were analyzed based on pictures from an environmental scanning electron microscope (ESEM). This provides quantitative relationships between dimensional changes of total area, cell wall, and lumen, and moisture content for earlywood and latewood. Earlywood and latewood behave similarly but show some quantitative differences. The overall outcome for sections containing both kinds of wood seems to be dominated by the latewood behavior. The observed strain behavior of wood during drying is anisotropic in ways that are inconsistent with explanations solely related to microfibril orientation or earlywood/latewood interactions and more likely may be influenced by ray tracheids.
Resumo:
This study used a culture-independent molecular approach to investigate the archaeal community composition of thermophilic bioleaching reactors. Two culture samples, MTC-A and MTC-B, grown with different concentrations of chalcopyrite (CuFeS2), a copper sulfidic ore, at a temperature of 78 degrees C and pH 1.6 were studied. Phylogenetic analysis of the 16S rRNA genes revealed that both cultures consisted of Archaea belonging to the Sulfolobales. The 16S rRNA gene clone library of MTC-A grown with 4% (w/v) chalcopyrite was dominated by a unique phylotype related to Sulfolobus shibatae (69% of total clones). The remaining clones were affiliated with Stygiolobus azoricus (11%), Metallosphaera sp. J1 (8%), Acidianus infernus (2%), and a novel phylotype related to Sulfurisphaera ohwakuensis (10%). In contrast, the clones from MTC-B grown with 12% (w/v) chalcopyrite did not appear to contain Sulfolobus shibatae-like organisms. Instead the bioleaching consortium was dominated by clones related to Sulfurisphaera ohwakuensis (73.9% of total clones). The remaining microorganisms detected were similar to those found in MTC-A.
Resumo:
Sustained delivery of heparin to the localized adventitial surface of grafted blood vessels has been shown to prevent the vascular smooth muscle cell (VSMC) proliferation that can lead to graft occlusion and failure. In this study heparin was incorporated into electrospun poly(epsilon-caprolactone) (PCL) fiber mats for assessment as a controlled delivery device. Fibers with smooth surfaces and no bead defects could be spun from polymer solutions with 8% w/v PCL in 7:3 dichloromethane: methanol. A significant decrease in fiber diameter was observed with increasing heparin concentration. Assessment of drug loading, and imaging of fluorescently labeled heparin showed homogenous distribution of heparin throughout the fiber mats. A total of approximately half of the encapsulated heparin was released by diffusional control from the heparin/PCL fibers after 14 days. The fibers did not induce an inflammatory response in macrophage cells in vitro and the released heparin was effective in preventing the proliferation of VSMCs in culture. These results suggest that electrospun PCL fibers are a promising candidate for delivery of heparin to the site of vascular injury. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded: chitinase, 1-aminocyclopropane- 1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species. © 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Functional interactions between classical cadherins and the actin cytoskeleton involve diverse actin activities, including filament nucleation, cross-linking, and bundling. In this report, we explored the capacity of Ena/VASP proteins to regulate the actin cytoskeleton at cadherin-adhesive contacts. We extended the observation that Ena/vasodilator-stimulated phosphoprotein (VASP) proteins localize at cell-cell contacts to demonstrate that E-cadherin homophilic ligation is sufficient to recruit Mena to adhesion sites. Ena/VASP activity was necessary both for F-actin accumulation and assembly at cell-cell contacts. Moreover, we identified two distinct pools of Mena within individual homophilic adhesions that cells made when they adhered to cadherin-coated substrata. These Mena pools localized with Arp2/3-driven cellular protrusions as well as at the tips of cadherin-based actin bundles. Importantly, Ena/VASP activity was necessary for both modes of actin activity to be expressed. Moreover, selective depletion of Ena/VASP proteins from the tips of cadherin-based bundles perturbed the bundles without affecting the protrusive F-actin pool. We propose that Ena/VASP proteins may serve as higher order regulators of the cytoskeleton at cadherin contacts through their ability to modulate distinct modes of actin organization at those contacts.
Resumo:
This study evaluates the pro-inflammatory response to the thermoplastic biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) through the analysis of cellular responses in vitro. The murine macrophage RAW264.7 cell line was cultured on solvent cast PHBV films, which was found to induce pro-inflammatory activity that required direct contact between the material and the macrophages. The identity of the pro-inflammatory stimulus was determined by culturing bone marrow-derived macrophages from bacterial lipopolysaccharide (LPS) hyporesponsive C3H/HeJ mice and CpG non-responsive TLR9-/- mice on PHBV. The lack of a pro-inflammatory response by the C3H/HeJ cells indicates that the pro-inflammatory agent present within PHBV is predominately LPS while the TLR9-/- macrophages confirmed that CpG-containing bacterial DNA is unlikely to contribute to the activity. A series of purification procedures was evaluated and one procedure was developed that utilized hydrogen peroxide treatment in solution. The optimized purification was found to substantially reduce the pro-inflammatory response to PHBV without adversely affecting either the molecular structure or molecular weight of the material thereby rendering it more amenable for use as a biomaterial in vivo. Crown Copyright (c) 2006 Published by Elsevier Ltd. All rights reserved.
Resumo:
To date, alpha-catenin has been best understood as an important cytoplasmic component of the classical cadherin complex responsible for cell-cell adhesion. By virtue of its capacity to bind F-actin, alpha-catenin was commonly envisaged to support cadherin function by coupling the adhesion receptor to the actin cytoskeleton. But is alpha-catenin solely the cadherin's handmaiden? A range of recent developments suggest, instead, that its biological activity is much more complex than previously appreciated. Evidence from cellular systems and model organisms demonstrates a clear, often dramatic, role for alpha-catenin in tissue organization and morphogenesis. The morphogenetic impact of alpha-catenin reflects its capacity to mediate functional cooperation between cadherins and the actin cytoskeleton, but is not confined to this. alpha-Catenin has a role in regulating cell proliferation and cadherin-independent pools of alpha-catenin may contribute to its functional impact.
Resumo:
The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell-surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.
Resumo:
Despite differences in their morphologies, comparative analyses of 16S rRNA gene sequences revealed high levels of similarity (> 94 %) between strains of the filamentous bacterium 'Candidatus Nostocoida limicola' and the cocci Tetrasphaera australiensis and Tetrasphaera japonica and the rod Tetrasphaera elongata, all isolated from activated sludge. These sequence data and their chemotaxonomic characters, including cell wall, menaquinone and lipid compositions and fingerprints of their 16S-23S rRNA intergenic regions, support the proposition that these isolates should be combined into a single genus containing six species, in the family Intrasporangiaceae in the Actinobacteria. This suggestion receives additional support from DNA-DNA hybridization data and when partial sequences of the rpoC1 gene are compared between these strains. Even though few phenotypic characterization data were obtained for these slowly growing isolates, it is proposed, on the basis of the extensive chemotaxonomic and molecular evidence presented here, that 'Candidatus N. limicola' strains Ben 17, Ben 18, Ben 67, Ben 68 and Ben 74 all be placed into the species Tetrasphaera jenkinsii sp. nov. (type strain Ben 74(T) = DSM 17519(T) = NCIMB 14128(T)), 'Candidatus N. limicola' strain Ben 70 into Tetrasphaera vanveenii sp. nov. (type strain Ben 70(T) = DSM 17518(T) = NCIMB 14127(T)) and 'Candidatus N. limicola' strains Ver 1 and Ver 2 into Tetrasphaera veronensis sp. nov. (type strain Ver 1(T) = DSM 17520(T) = NCIMB 14129(T)).