914 resultados para breast cancer cell line MDA-MB-231
Resumo:
In the intrinsic pathway of apoptosis, cell-damaging signals promote the release of cytochrome c from mitochondria, triggering activation of the Apaf-1 and caspase-9 apoptosome. The ubiquitin E3 ligase MDM2 decreases the stability of the proapoptotic factor p53. We show that it also coordinated apoptotic events in a p53-independent manner by ubiquitylating the apoptosome activator CAS and the ubiquitin E3 ligase HUWE1. HUWE1 ubiquitylates the antiapoptotic factor Mcl-1, and we found that HUWE1 also ubiquitylated PP5 (protein phosphatase 5), which indirectly inhibited apoptosome activation. Breast cancers that are positive for the tyrosine receptor kinase HER2 (human epidermal growth factor receptor 2) tend to be highly aggressive. In HER2-positive breast cancer cells treated with the HER2 tyrosine kinase inhibitor lapatinib, MDM2 was degraded and HUWE1 was stabilized. In contrast, in breast cancer cells that acquired resistance to lapatinib, the abundance of MDM2 was not decreased and HUWE1 was degraded, which inhibited apoptosis, regardless of p53 status. MDM2 inhibition overcame lapatinib resistance in cells with either wild-type or mutant p53 and in xenograft models. These findings demonstrate broader, p53-independent roles for MDM2 and HUWE1 in apoptosis and specifically suggest the potential for therapy directed against MDM2 to overcome lapatinib resistance.
Resumo:
There is concern about the potential increase of hematological toxicity in elderly patients treated with chemotherapy. Recently, primary prophylaxis with colony-stimulating factors (CSFs) was proposed for elderly patients receiving moderately toxic chemotherapy. However, evidence for the benefits of this primary prophylaxis for elderly breast cancer patients is currently lacking. We retrospectively analyzed the incidence of febrile neutropenia (FN) and neutropenic infections in elderly breast cancer patients receiving anthracycline-based chemotherapy without primary prophylaxis with colony-stimulating factors. In addition, we assessed the direct costs of hospitalization for these complications. Febrile neutropenia or neutropenic infection occurred in 13% of the 46 patients. Further studies are needed to adequately evaluate the risk of neutropenic complications (NC) in elderly patients receiving standard-dose chemotherapy for breast cancer and the potential benefits of primary prophylaxis with colony-stimulating factors. © 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Clinical Trial
Resumo:
A distinctive subset of metastatic breast cancer (MBC) is oligometastatic disease, which is characterized by single or few detectable metastatic lesions. The existing treatment guidelines for patients with localized MBC include surgery, radiotherapy, and regional chemotherapy. The European School of Oncology-Metastatic Breast Cancer Task Force addressed the management of these patients in its first consensus recommendations published in 2007. The Task Force endorsed the possibility of a more aggressive and multidisciplinary approach for patients with oligometastatic disease, stressing also the need for clinical trials in this patient population. At the sixth European Breast Cancer Conference, held in Berlin in March 2008, the second public session on MBC guidelines addressed the controversial issue of whether MBC can be cured. In this commentary, we summarize the discussion and related recommendations regarding the available therapeutic options that are possibly associated with cure in these patients. In particular, data on local (surgery and radiotherapy) and chemotherapy options are discussed. Large retrospective series show an association between surgical removal of the primary tumor or of lung metastases and improved long-term outcome in patients with oligometastatic disease. In the absence of data from prospective randomized studies, removal of the primary tumor or isolated metastatic lesions may be an attractive therapeutic strategy in this subset of patients, offering rapid disease control and potential for survival benefit. Some improvement in outcome may also be achieved with optimization of systemic therapies, possibly in combination with optimal local treatment. © 2010. Published by Oxford University Press.
Resumo:
Erm, a member of the PEA3 group within the Ets family of transcription factors, is expressed in murine and human lymphocytes. Here, we show that in the human Molt4 lymphoblastic cell line, the erm gene expression is regulated by the conventional PKC (cPKC) pathway. To better characterize the molecular mechanism by which cPKC regulates Erm transcription in Molt4 cells, we tested proximal promoter deletions of the human gene, and identified a specific cPKC-regulated region between positions -420 and -115 upstream of the first exon.
Resumo:
The incidence of prostate cancer is increasing in western countries because of population aging. Prostate cancer begins as an androgen-dependent disease, but it can become androgen independent at a later stage or in tumors recurring after an antihormonal treatment. Although many genetic events have been described to be involved in androgen-dependent and/or -independent prostate cancer growth, little is known about the contribution of epigenetic events. Here we have examined the possibility that the methyl-CpG-binding protein MECP2 might play a role in controlling the growth of prostate cancer cells. Inhibition of MECP2 expression by stable short hairpin RNA stopped the growth of both normal and cancer human prostate cells. In addition, ectopic expression of the MECP2 conferred a growth advantage to human prostate cancer cells. More importantly, this expression allowed androgen-dependent cells to grow independently of androgen stimulation and to retain tumorigenic properties in androgen-depleted conditions. Analysis of signaling pathways showed that this effect is independent of androgen receptor signaling. Instead, MECP2 appears to act by maintaining a constant c-myc level during antihormonal treatment. We further show that MECP2-expressing cells possess a functional p53 pathway and are still responsive to chemotherapeutic drugs.
Resumo:
The transcription factor Ets-1 is implicated in various physiological processes and invasive pathologies. We identified a novel variant of ets-1, ets-1Delta(III-VI), resulting from the alternative splicing of exons III to VI. This variant encodes a 27 kDa isoform, named Ets-1 p27. Ets-1 p27 lacks the threonine-38 residue, the Pointed domain and the transactivation domain, all of which are required for the transactivation of Ets-1 target genes. Both inhibitory domains surrounding the DNA-binding domain are conserved, suggesting that Ets-1 p27, like the full-length Ets-1 p51 isoform, is autoinhibited for DNA binding. We showed that Ets-1 p27 binds DNA in the same way as Ets-1 p51 does and that it acts both at a transcriptional and a subcellular localization level, thereby constituting a dual-acting dominant negative of Ets-1 p51. Ets-1 p27 blocks Ets-1 p51-mediated transactivation of target genes and induces the translocation of Ets-1 p51 from the nucleus to the cytoplasm. Furthermore, Ets-1 p27 overexpression represses the tumor properties of MDA-MB-231 mammary carcinoma cells in correlation with the known implication of Ets-1 in various cellular mechanisms. Thus the dual-acting dominant-negative function of Ets-1 p27 gives to the Ets-1 p27/Ets-1 p51 ratio a determining effect on cell fate.
Resumo:
info:eu-repo/semantics/published
Resumo:
Acknowledgements: I thank Dr. Barbour Warren, arriet Richardson and Alison James for their helpful input.
Resumo:
Epidemiological studies have identified psychological stress as a significant risk factor in breast cancer. The stress response is regulated by the HPA axis in the brain and is mediated by glucocorticoid receptor (GR) signalling. It has been found that early life events can affect epigenetic programming of GR, and methylation of the GR promoter has been reported in colorectal tumourigenesis. Decreased GR expression has also been observed in breast cancer. In addition, it has been previously demonstrated that unliganded GR can serve as a direct activator of the BRCA1 promoter in mammary epithelial cells. We propose a model whereby methylation of the GR promoter in the breast significantly lowers GR expression, resulting in insufficient BRCA1 promoter activation and an increased risk of developing cancer. Antibody-based methylated DNA enrichment was followed by qPCR analysis (MeDIP-qPCR) in a novel assay developed to detect locus-specific methylation levels. It was found that 13% of primary breast tumours were hypermethylated at the GR proximal promoter whereas no methylation was detected in normal tissue. RT-PCR and 5’ RACE analysis identified exon 1B as the predominant alternative first exon in the breast. Tumours methylated near exon 1B had decreased GR expression compared to unmethylated samples, suggesting that this region is important for transcriptional regulation of GR. It was also determined that GR and BRCA1 expression was decreased in breast tumour compared to normal tissue. Furthermore, the relative expression of GR and BRCA1 measured by qRT-PCR was correlated in normal tissue but this association was not found in tumour tissue. From this, it appears that lower GR levels with associated decreased BRCA1 expression in tissues may be a predisposing factor for breast cancer. Based on these results we propose a role for GR as a potential tumour suppressor gene in the breast due to its association with BRCA1, also a tumour suppressor gene, as well as its consistently decreased expression in breast tumours and methylation of its proximal promoter in a subset of cancer patients.