978 resultados para biological species


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large-scale, long-term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May-June 2008) and after 128 days (July-October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25-28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short-term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO2) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO2-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arctic Ocean and its associated ecosystems face numerous challenges over the coming century. Increasing atmospheric CO2 is causing increasing warming and ice melting as well as a concomitant change in ocean chemistry ("ocean acidification"). As temperature increases it is expected that many temperate species will expand their geographic distribution northwards to follow this thermal shift; however with the addition of ocean acidification this transition may not be so straightforward. Here we investigate the potential impacts of ocean acidification and climate change on populations of an intertidal species, in this case the barnacle Semibalanus balanoides, at the northern edge of its range. Growth and development of metamorphosing post-larvae were negatively impacted at lower pH (pH 7.7) compared to the control (pH 8.1) but were not affected by elevated temperature (+4 °C). The mineral composition of the shells did not alter under any of the treatments. The combination of reduced growth and maintained mineral content suggests that there may have been a change in the energetic balance of the exposed animals. In undersaturated conditions more mineral is expected to dissolve from the shell and hence more energy would be required to maintain the mineral integrity. Any energy that would normally be invested into growth could be reallocated and hence organisms growing in lowered pH grow slower and end up smaller than individuals grown in higher pH conditions. The idea of reallocation of resources under different conditions of pH requires further investigation. However, there could be long-term implications on the fitness of these barnacles, which in turn may prevent them from successfully colonising new areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All species of coccolithophore appear to respond to perturbations of carbonate chemistry in a different way. Here, we show that the degree of malformation, growth rate and stable isotopic composition of organic matter and carbonate produced by two contrasting species of coccolithophore (Gephyrocapsa oceanica and Coccolithus pelagicus ssp. braarudii) are indicative of differences between their photosynthetic and calcification response to changing DIC levels (ranging from ~1100 to ~7800 µmol/kg) at constant pH (8.13 ± 0.02). Gephyrocapsa oceanica thrived under all conditions of DIC, showing evidence of increased growth rates at higher DIC, but C. braarudii was detrimentally affected at high DIC showing signs of malformation, and decreased growth rates. The carbon isotopic fractionation into organic matter and the coccoliths suggests that C. braarudii utilises a common internal pool of carbon for calcification and photosynthesis but G. oceanica relies on independent supplies for each process. All coccolithophores appear to utilize bicarbonate as their ultimate source of carbon for calcification resulting in the release of a proton. But, we suggest that this proton can be harnessed to enhance the supply of CO2(aq) for photosynthesis either from a large internal HCO3- pool which acts as a pH buffer (C. braarudii), or pumped externally to aid the diffusive supply of CO2 across the membrane from the abundant HCO3- (G. oceanica), likely mediated by an internal and external carbonic anhydrase respectively. Our simplified hypothetical spectrum of physiologies may provide a context to understand different species response to changing pH and DIC, the species-specific delta p and calcite "vital effects", as well as accounting for geological trends in coccolithophore cell size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of ocean acidification and increased water temperature on marine ecosystems, in particular those involving calcifying organisms, has been gradually recognised. We examined the individual and combined effects of increased pCO2 (180 ppmV CO2, 380 ppmV CO2 and 750 ppmV CO2 corresponding to past, present and future CO2 conditions, respectively) and temperature (13 °C and 18 °C) during the exponential growth phase of the coccolithophore E. huxleyi using batch culture experiments. We showed that cellular production rate of Particulate Organic Carbon (POC) increased from the present to the future CO2 treatments at 13 °C. A significant effect of pCO2 and of temperature on calcification was found, manifesting itself in a lower cellular production rate of Particulate Inorganic Carbon (PIC) as well as a lower PIC:POC ratio at future CO2 levels and at 18 °C. Coccosphere-sized particles showed a size reduction with both increasing temperature and CO2concentration. The influence of the different treatments on coccolith morphology was studied by categorizing SEM coccolith micrographs. The number of well-formed coccoliths decreased with increasing pCO2 while temperature did not have a significant impact on coccolith morphology. No interacting effects of pCO2 and temperature were observed on calcite production, coccolith morphology or on coccosphere size. Finally, our results suggest that ocean acidification might have a larger adverse impact on coccolithophorid calcification than surface water warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification (OA) is believed to be a major threat for near-future marine ecosystems, and that the most sensitive organisms will be calcifying organisms and the free-living larval stages produced by most benthic marine species. In this respect, echinoderms are one of the taxa most at risk. Earlier research on the impact of near-future OA on echinoderm larval stages showed negative effects, such as a decreased growth rate, increased mortality, and developmental abnormalities. However, all the long-term studies were performed on planktotrophic larvae while alternative life-history strategies, such as nonfeeding lecithotrophy, were largely ignored. Here, we show that lecithotrophic echinoderm larvae and juveniles are positively impacted by ocean acidification. When cultured at low pH, larvae and juveniles of the sea star Crossaster papposus grow faster with no visible affects on survival or skeletogenesis. This suggests that in future oceans, lecithotrophic species may be better adapted to deal with the threat of OA compared with planktotrophic ones with potentially important consequences at the ecosystem level. For example, an increase in populations of the top predator C. papposus will likely have huge consequences for community structure. Our results also highlight the importance of taking varying life-history strategies into account when assessing the impacts of climate change, an approach that also provides insight into understanding the evolution of life-history strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acidification of ocean surface waters by anthropogenic carbon dioxide (CO2) emissions is a currently developing scenario that warrants a broadening of research foci in the study of acid-base physiology. Recent studies working with environmentally relevant CO2 levels, indicate that some echinoderms and molluscs reduce metabolic rates, soft tissue growth and calcification during hypercapnic exposure. In contrast to all prior invertebrate species studied so far, growth trials with the cuttlefish Sepia officinalis found no indication of reduced growth or calcification performance during long-term exposure to 0.6 kPa CO2. It is hypothesized that the differing sensitivities to elevated seawater pCO2 could be explained by taxa specific differences in acid-base regulatory capacity. In this study, we examined the acid-base regulatory ability of S. officinalis in vivo, using a specially modified cannulation technique as well as 31P NMR spectroscopy. During acute exposure to 0.6 kPa CO2, S. officinalis rapidly increased its blood [HCO3] to 10.4 mM through active ion-transport processes, and partially compensated the hypercapnia induced respiratory acidosis. A minor decrease in intracellular pH (pHi) and stable intracellular phosphagen levels indicated efficient pHi regulation. We conclude that S. officinalis is not only an efficient acid-base regulator, but is also able to do so without disturbing metabolic equilibria in characteristic tissues or compromising aerobic capacities. The cuttlefish did not exhibit acute intolerance to hypercapnia that has been hypothesized for more active cephalopod species (squid). Even though blood pH (pHe) remained 0.18 pH units below control values, arterial O2 saturation was not compromised in S. officinalis because of the comparatively lower pH sensitivity of oxygen binding to its blood pigment. This raises questions concerning the potentially broad range of sensitivity to changes in acid-base status amongst invertebrates, as well as to the underlying mechanistic origins. Further studies are needed to better characterize the connection between acid-base status and animal fitness in various marine species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recreational fisheries in North America are valued between $47.3 billion and $56.8 billion. Fisheries managers must make strategic decisions based on sound science and knowledge of population ecology, to effectively conserve populations. Competitive fishing, in the form of tournaments, has become an important part of recreational fisheries, and is common on large waterbodies including the Great Lakes. Black Bass, Micropterus spp., are top predators and among the most sought after species in competitive catch-and-release tournaments. This study investigated catch-and-release tournaments as an assessment tool through mark-recapture for Largemouth Bass (>305mm) populations in the Tri Lakes, and Bay of Quinte, part of the eastern basin of Lake Ontario. The population in the Tri Lakes (1999-2002) was estimated to be stable between 21,928-29,780, and the population in the Bay of Quinte (2012-2015) was estimated to be between 31,825-54,029 fish. Survival in the Tri Lakes varied throughout the study period, from 31%-54%; while survival in the Bay of Quinte remained stable at 63%. Differences in survival may be due to differences in fishing pressure, as 34-46% of the Largemouth Bass population on the Tri Lakes is harvested annually and only 19% of catch was attributed to tournament angling. Many biological issues still surround catch-and-release tournaments, particularly concerning displacement from initial capture sites. In the past, the majority of studies have focused on small inland lakes and coastal areas, displacing bass relatively short distances. My study displaced Largemouth and Smallmouth Bass up to 100km, and found very low rates of return; only 1 of 18 Largemouth Bass returned 15 km and 1 of 18 Smallmouth Bass returned 135 km. Both species remained near the release sites for an average of approximately 2 weeks prior to dispersing. Tournament organizers should consider the use of satellite release locations to facilitate dispersal and prevent stockpiling at the release site. Catch-and-release tournaments proved to be a valuable tool in assessing population variables and the effects of long distance displacement through the use of mark recapture and acoustic telemetry on large lake systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterization of the genomic basis underlying schistosome biology is an important strategy for the development of future treatments and interventions. Genomic sequence is now available for the three major clinically relevant schistosome species, Schistosoma mansoni, S. japonicum and S. haematobium, and this information represents an invaluable resource for the future control of human schistosomiasis. The identification of a biologically important, but distinct from the host, schistosome gene product is the ultimate goal for many research groups. While the initial elucidation of the genome of an organism is critical for most biological research, continued improvement or curation of the genome construction should be an ongoing priority. In this review we will discuss prominent recent findings utilizing a systems approach to schistosome biology, as well as the increased use of interference RNA (RNAi). Both of these research strategies are aiming to place parasite genes into a more meaningful biological perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

XIMENES, Maria de Fátima Freire de Melo; MACIEL, Janaína Cunha; JERONIMO, Selma Maria Bezerra. Characteristics of the Biological Cycle of Lutzomyia evandroi Costa Lima & Antunes, 1936 (diptera: psychodidae) under experimental conditions. Memorias do Instituto Oswaldo Cruz, Rio de Janeiro, v.96, n.6, p.883-886, ago. 2001. Disponivel em: Acesso em: 4 out. 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] The taxonomy of pedunculate cirripedes belonging to the genus Pollicipes has essentially remained unchanged since Charles Darwin described them in his exhaustive work on the Cirripedia. This genus includes three species of stalked barnacles: Pollicipes pollicipes in the north-eastern Atlantic, P. polymerus in the north-eastern Pacific and P. elegans in the central-eastern Pacific. However, a population genetics analysis of P. pollicipes suggested the presence of a putative cryptic species collected from the Cape Verde Islands in the central-eastern Atlantic. This study examines the morphology of these genetically divergent specimens and compares them with that of representative Atlantic samples of the biogeographically closely related P. pollicipes and with the poorly described P. elegans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La spectrométrie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employée dans plusieurs domaines et peut analyser des mélanges complexes. L’imagerie par spectrométrie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectrométrie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions détectés. Jusqu’à présent, les échantillons les plus étudiés en IMS sont des sections tissulaires végétales ou animales. Parmi les molécules couramment analysées par l’IMS, les lipides ont suscité beaucoup d'intérêt. Les lipides sont impliqués dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rôles, comme celui de réguler des événements cellulaires. Considérant l’implication des lipides dans la biologie et la capacité du MALDI IMS à les analyser, nous avons développé des stratégies analytiques pour la manipulation des échantillons et l’analyse de larges ensembles de données lipidiques. La dégradation des lipides est très importante dans l’industrie alimentaire. De la même façon, les lipides des sections tissulaires risquent de se dégrader. Leurs produits de dégradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espèces lipidiques pouvant nuire à la précision des mesures d’abondance. Puisque les lipides oxydés sont aussi des médiateurs importants dans le développement de plusieurs maladies, leur réelle préservation devient donc critique. Dans les études multi-institutionnelles où les échantillons sont souvent transportés d’un emplacement à l’autre, des protocoles adaptés et validés, et des mesures de dégradation sont nécessaires. Nos principaux résultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydés et des lysophospholipides dans des conditions ambiantes, une diminution de la présence des lipides ayant des acides gras insaturés et un effet inhibitoire sur ses phénomènes de la conservation des sections au froid sous N2. A température et atmosphère ambiantes, les phospholipides sont oxydés sur une échelle de temps typique d’une préparation IMS normale (~30 minutes). Les phospholipides sont aussi décomposés en lysophospholipides sur une échelle de temps de plusieurs jours. La validation d’une méthode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athérosclérose est une maladie cardiovasculaire induite par l’accumulation de matériel cellulaire sur la paroi artérielle. Puisque l’athérosclérose est un phénomène en trois dimension (3D), l'IMS 3D en série devient donc utile, d'une part, car elle a la capacité à localiser les molécules sur la longueur totale d’une plaque athéromateuse et, d'autre part, car elle peut identifier des mécanismes moléculaires du développement ou de la rupture des plaques. l'IMS 3D en série fait face à certains défis spécifiques, dont beaucoup se rapportent simplement à la reconstruction en 3D et à l’interprétation de la reconstruction moléculaire en temps réel. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athérosclérose d’une carotide humaine et d’un modèle murin d’athérosclérose, nous avons élaboré des méthodes «open-source» pour la reconstruction des données de l’IMS en 3D. Notre méthodologie fournit un moyen d’obtenir des visualisations de haute qualité et démontre une stratégie pour l’interprétation rapide des données de l’IMS 3D par la segmentation multivariée. L’analyse d’aortes d’un modèle murin a été le point de départ pour le développement des méthodes car ce sont des échantillons mieux contrôlés. En corrélant les données acquises en mode d’ionisation positive et négative, l’IMS en 3D a permis de démontrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en évidence une localisation différentielle des acides gras libres, du cholestérol, des esters du cholestérol et des triglycérides. La segmentation multivariée des signaux lipidiques suite à l’analyse par IMS d’une carotide humaine démontre une histologie moléculaire corrélée avec le degré de sténose de l’artère. Ces recherches aident à mieux comprendre la complexité biologique de l’athérosclérose et peuvent possiblement prédire le développement de certains cas cliniques. La métastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie métastatique du cancer colorectal primaire, un des cancers le plus fréquent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectués avec l’histopathologie avec une marge d’erreur. Nous avons utilisé l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures moléculaires, nous avons pu déterminer un score histopathologique quantitatif et objectif et qui corrèle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifié des espèces lipidiques individuelles qui sont discriminants des différentes histologies du CRCLM et qui peuvent potentiellement être utilisées comme des biomarqueurs pour la détermination de la réponse à la thérapie. Plus spécifiquement, nous avons trouvé une série de plasmalogènes et sphingolipides qui permettent de distinguer deux différents types de nécrose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associé avec la réponse aux traitements chimiothérapiques, alors que l’UN est associé au fonctionnement normal de la tumeur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past decade, the number of biological records submitted by members of the public have increased dramatically. However, this may result in reduced record quality, depending on how species are promoted in the media. Here we examined the two main promotional approaches for citizen science recording schemes: flagship-species, using one charismatic species as an umbrella for the entire group (here, Harmonia axyridis (Pallas) for Coleoptera: Coccinellidae), and general-group, where the group is promoted as a whole and no particular prominence is given to any one species (here, bumblebees, genus Bombus (Hymenoptera: Apidae)). Of the two approaches, the general-group approach produced data that was not biased towards any one species, but far fewer records per year overall. In contrast, the flagship-species approach generated a much larger annual dataset, but heavily biased towards the flagship itself. Therefore, we recommend that the approach for species promotion is fitted to the result desired.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mediterranean species Cynara cardunculus L. is recognized in the traditional medicine, for their hepatoprotective and choleretic effects. Biomass of C. cardunculus L. var. altilis (DC), or cultivated cardoon, may be explored not only for the production of energy and pulp fibers, but also for the extraction of bioactive compounds. The chemical characterization of extractable components, namely terpenic and phenolic compounds, may valorize the cultivated cardoon plantation, due to their antioxidant, antitumoral and antimicrobial activities. In this study, the chemical composition of lipophilic and phenolic fractions of C. cardunculus L. var. altilis (DC), cultivated in the south of Portugal (Baixo Alentejo region) was characterized in detail, intending the integral valorization of its biomass. The biological activity of cultivated cardoon extracts was evaluated in terms of antioxidant, human tumor cell antiproliferative and antibacterial effects. Gas chromatography-mass spectrometry (GC-MS) was used for the chemical analysis of lipophilic compounds. Sixty-five lipophilic compounds were identified, from which 1 sesquiterpene lactone and 4 pentacyclic triterpenes were described, for the first time, as cultivated cardoon components, such as: deacylcynaropicrin, acetates of β- and α-amyrin, lupenyl acetate and ψ-taraxasteryl acetate. Sesquiterpene lactones were the major family of lipophilic components of leaves (≈94.5 g/kg), mostly represented by cynaropicrin (≈87.4 g/kg). Pentacyclic triterpenes were also detected, in considerably high contents, in the remaining parts of cultivated cardoon, especially in the florets (≈27.5 g/kg). Taraxasteryl acetate was the main pentacyclic triterpene (≈8.9 g/kg in florets). High pressure liquid chromatography-mass spectrometry (HPLC-MS) was utilized for the chemical analysis of phenolic compounds. Among the identified 28 phenolic compounds, eriodictyol hexoside was reported for the first time as C. cardunculus L. component, and 6 as cultivated cardoon components, namely 1,4-di-O-caffeoylquinic acid, naringenin 7-O-glucoside, naringenin rutinoside, naringenin, luteolin acetylhexoside and apigenin acetylhexoside. The highest content of the identified phenolic compounds was observed in the florets (≈12.6 g/kg). Stalks outer part contained the highest hydroxycinnamic acids abundance (≈10.3 g/kg), and florets presented the highest flavonoids content (≈10.3 g/kg). The antioxidant activity of phenolic fraction was examined through 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Stalks outer part, and receptacles and bracts extracts demonstrated the highest antioxidant effect on DPPH (IC50 of 34.35 μg/mL and 35.25 μg/mL, respectively). (cont.) abstract (cont.) The DPPH scavenging effect was linearly correlated with the total contents of hydroxycinnamic acids (r = -0.990). The in vitro antiproliferative activity of cultivated cardoon lipophilic and phenolic extracts was evaluated on a human tumor cells line of triple-negative breast cancer (MDA-MB-231), one of the most refractory human cancers to conventional therapeutics. After 48 h of exposition, leaves lipophilic extract showed higher inhibitory effect (IC50 = 10.39 μg/mL) than florets lipophilic extract (IC50 = 315.22 μg/mL), upon MDA-MB-231 cellular viability. Pure compound of cynaropicrin, representative of the main compound identified in leaves lipophilic extract, also prevented the cell proliferation of MDA-MB-231 (IC50 = 17.86 μM). MDA-MB-231 cells were much more resistant to the 48 h- treatment with phenolic extracts of stalks outer part (IC50 = 3341.20 μg/mL) and florets (IC50 > 4500 μg/mL), and also with the pure compound of 1,5-di-O-caffeoylquinic acid (IC50 = 1741.69 μM). MDA-MB-231 cells were exposed, for 48 h, to the respective IC50 concentrations of leaves lipophilic extract and pure compound of cynaropicrin, in order to understand their ability in modelling cellular responses, and consequently important potentially signaling pathways for the cellular viability decrease. Leaves lipophilic extract increased the caspase-3 enzymatic activity, contrarily to pure compound of cynaropicrin. Additionally, leaves lipophilic extract and pure compound of cynaropicrin caused G2 cell cycle arrest, possibly by upregulating the p21Waf1/Cip1 and the accumulation of phospho-Tyr15-CDK1 and cyclin B1. The inhibitory effects of leaves lipophilic extract and cynaropicrin pure compound, against the MDA-MB-231 cell proliferation, may also be related to the downregulation of phospho-Ser473-Akt. The antibacterial activity of cultivated cardoon lipophilic and phenolic extracts was assessed, for the first time, on two multidrug-resistant bacteria, such as the Gram-negative Pseudomonas aeruginosa PAO1 and the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), two of the main bacteria responsible for health care-associated infections. Accordingly, the minimum inhibitory concentrations (MIC) were determined. Lipophilic and phenolic extracts of florets did not have antibacterial activity on P. aeruginosa PAO1 and MRSA (MIC > 2048 μg/mL). Leaves lipophilic extract did not prevent the P. aeruginosa PAO1 growth, but pure compound of cynaropicrin was slightly active (MIC = 2048 μg/mL). Leaves lipophilic extract and pure compound of cynaropicrin blocked MRSA growth (MIC of 1024 and 256 μg/mL, respectively). The scientific knowledge revealed in this thesis, either by the chemical viewpoint, or by the biological viewpoint, contributes for the valorization of C. cardunculus L. var. altilis (DC) biomass. Cultivated cardoon has potential to be exploited as source of bioactive compounds, in conciliation with other valorization pathways, and Portuguese traditional cheeses manufacturing.