970 resultados para biological control
Resumo:
Products based on botanical insecticides and entomopathogenic fungi have been widely used in organic farming, especially in southern Brazil. Thus, this study investigated, in vitro, the effect of aqueous extracts and commercial formulations of plants with insecticidal activity on Beauveria bassiana. The treatments comprised the botanical insecticides Neempro (azadiractin +3-tigloylazadirachtol), at the concentrations of 0.25, 0.5, 0.75, and 1.0% (v/v), and DalNeem (neem oil emulsifiable), at 0.5, 1.0, 1.5, and 2.0% (v/v) (both commercial formulations of Azadirachta indica (neem)), and the aqueous extracts, at the concentrations of 2.5, 5.0, 7.5, and 10.0% (w/v), of neem seeds, tobacco powder (Nicotiana tabacum), and catigua leaves (Trichilia clausenii). In potato, dextrose, and agar culture medium, the effects of each product on the mycelial growth and the production and viability of conidia of B. bassiana were estimated. According to the adopted compatibility index, the aqueous extracts of neem seeds and leaves catigua, depending on the concentration used, and the botanical insecticide Neempro, were classified as compatible with the entomopathogen, becoming important alternatives to integrate programmes of integrated pest management, especially in organic farming systems.
Resumo:
Fungi are disease-causing agents in plants and affect crops of economic importance. One control method is to induce resistance in the host by using biological control with hypovirulent phytopathogenic fungi. Here, we report the detection of a mycovirus in a strain of Colletotrichum gloeosporioides causing anthracnose of cashew tree. The strain C. gloeosporioides URM 4903 was isolated from a cashew tree (Anacardium occidentale) in Igarassu, PE, Brazil. After nucleic acid extraction and electrophoresis, the band corresponding to a possible double-stranded RNA (dsRNA) was purified by cellulose column chromatography. Nine extrachromosomal bands were obtained. Enzymatic digestion with DNAse I and Nuclease S1 had no effect on these bands, indicating their dsRNA nature. Transmission electron microscopic examination of extracts from this strain showed the presence of isometric particles (30-35 nm in diameter). These data strongly suggest the infection of this C. gloeosporioides strain by a dsRNA mycovirus. Once the hypovirulence of this strain is confirmed, the strain may be used for the biological control of cashew anthracnose.
Resumo:
The coconut mite, Aceria guerreronis Keifer, is one of the main pests of coconut palms (Cocos nucifera) in northeastern Brazil. The objective of this study was to evaluate the levels of the coconut mite and other mites on coconut palms in the state of So Paulo and to estimate the possible role of predatory mites in the control of this pest. The effect of cultivated genotypes and sampling dates on the mite populations was also estimated. We sampled attached fruits, leaflets, inflorescences, and fallen fruits. The coconut mite was the main phytophagous mite found on attached and fallen fruits, with average densities of 110.0 and 20.5 mites per fruit, respectively. The prevalent predatory mites on attached and fallen fruits were Proctolaelaps bulbosus Moraes, Reis & Gondim Jr. and Proctolaelaps bickleyi (Bram), both Melicharidae. On leaflets, the tenuipalpids Brevipalpus phoenicis (Geijsks) and Tenuipalpus coyacus De Leon and the tetranychid Oligonychus modestus (Banks) were the predominant phytophagous mites. On both leaflets and inflorescences, the predominant predatory mites belonged to the Phytoseiidae. Neoseiulus baraki (Athias-Henriot) and Neoseiulus paspalivorus (De Leon), predators widely associated with the coconut mite in northeastern Brazil and several other countries, were not found. The low densities of the coconut mite in So Paulo could be related to prevailing climatic conditions, scarcity of coconut plantations (hampering the dispersion of the coconut mite between fields), and to the fact that some of the genotypes cultivated in the region are unfavorable for its development.
Resumo:
Egg parasitism of Trichogramma pretiosum strain RV when presented with eggs of Anticarsia gemmatalis and Pseudoplusia includens was investigated at 18, 20, 22, 25, 28, 30 and 32 degrees C. The number of eggs parasitized per day decreased for both hosts as a function of the age of parasitoids, reaching 80% of lifetime parasitism more rapidly as temperature increased; on the 4th day at 32 degrees C and on the 12th day at 18 degrees C. The lifetime number of parasitized P. includens eggs achieved by the parasitoid maintained at 20 degrees C (44.95 +/- 3.94) differed from the results recorded at 32 degrees C (28.5 +/- 1.33). Differently, the lifetime number of A. gemmatalis parasitized eggs did not differ among the temperatures. When T. pretiosum reached 100% of lifetime parasitism, each adult female had parasitized from 28.5 +/- 1.33 to 44.95 +/- 3.94 and from 29.58 +/- 2.80 to 45.36 +/- 4.50 P. includens and A. gemmatalis eggs, respectively. Also, the longevity of these adult T. pretiosum females, for which P. includens or A. gemmatalis eggs were offered, was inversely correlated with temperature. Not only were the survival curves of those adult T. pretiosum females of type I when they were presented with eggs of A. gemmatalis but also with eggs of P. includens, i.e., there was an increase in the mortality rate with time as the temperature increased. In conclusion, T. pretiosum strain RV parasitism was impacted by temperature when on both host eggs; however, the parasitoid still exhibited high survival and, more importantly, high number of parasitized A. gemmatalis and P. includens eggs even at the extremes tested temperatures of 18 and 32 degrees C. Those results indicate that T. pretiosum strain RV might be well adapted to this studied temperature range and, thus, be potentially suitable for use in biological control programs of P. includens and A. gemmatalis in different geographical areas that fits in this range. It is important to emphasize the results here presented are from laboratory studies and, therefore, field trials still need to be carried out in the future with this strain in order to support the full development of the technology intend to use this egg parasitoid in soybean fields worldwide. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Evania appendigaster is a cosmopolitan wasp that deposits eggs in the oothecae of some species of cockroaches; its larvae then consume the cockroach eggs and embryos. It is a candidate for the biological control of cockroaches, but little is known about its basic biology. Here we describe the external morphology of all immature stages of E. appendigaster and compare them with the larvae of related species. The life cycle of E. appendigaster includes three larval instars, each with 13 body segments. Their mouthparts were generally reduced, except for the mandibles, which were always sclerotized and toothed, and were especially robust in second-instar larvae. Antennal and mouthpart sensilla were basiconic and difficult to observe. Larvae of E. appendigaster are similar in form to other described evaniid larvae, but quite different from the two available descriptions of larvae of gasteruptiid and aulacid wasps. Further descriptions of evaniid larvae will be useful in determining how widespread this morphology is within the family, and in understanding phylogenetic relationships within Hymenoptera.
Resumo:
The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-beta-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-beta-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-beta-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte.
Resumo:
Knowledge of inter and intra-specific variation in the susceptibility of natural enemies to pesticides could help to better design integrated pest management strategies. The objective of this research was to evaluate the susceptibility to deltamethrin in populations of the predatory mites Neoseiulus californicus (McGregor) and Phytoseiulus macropilis (Banks) populations collected from protected ornamental crops in Brazil. The susceptibility to deltamethrin was characterized against immature and adult stages of both species. The impact of this insecticide was also measured by estimating the intrinsic rate of increase (r (i)). The immature and adult stages of N. californicus were approximately 3,600 and 3,000-fold more tolerant to deltamethrin than those of P. macropilis. However, high variability in the susceptibility to this insecticide was detected among P. macropilis populations, with resistance ratios of up to 3,500-fold. The selection of deltamethrin-resistant strains of P. macropilis could be exploited in applied biological control programs.
Resumo:
Background: Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. Methodology/Principal Findings: We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. Conclusions/Significance: Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this ubiquitous endophyte with the host plant, and also to a better use of microbial endophytes in agriculture.
Resumo:
Metarhizium anisopliae is one of the most studied agents of biological control of several arthropod plagues, including the cattle tick Rhipicephalus (Boophilus) microplus. Studies have been conducted to assess the fungal complex infection process towards its hosts. To accomplish that, mutant strains overexpressing or lacking assumed determinant genes for the process were constructed over the years. A fundamental experiment to demonstrate a particular gene or set of genes participation is the bioassay. The comparison of bioassays using wild and engineered strains is an essential tool to affirm a given gene is crucial in the process. Therefore, the in vitro bioassays should mimic the results obtained in tests under field conditions. In this study, tests under laboratory and filed conditions were done and a correlation analysis was performed in order to statistically validate in vitro bioassays. Tick egg laying, larvae hatching and host mortality were recorded in each experiment through 21 days, both under laboratory and field conditions. In all cases, M. anisopliae treatments were statistically different from the control treatments. A linear regression analysis was performed between the cases. Laboratory results showed a statistically significant correlation with the field conditions using the Pearson's Correlation Test (P < 0.01 host mortality - 0.969, tick egg laying - 0.977 and larvae hatching - 0.956). These results legitimize the in vitro bioassays and, therefore, constitute them as a valid tool for studying this fungus behavior, so they can be used to infer M. anisopliae response towards R. (Boophilus) microplus.
Resumo:
Surveys were conducted in Brazil, Benin and Tanzania to collect predatory mites as candidates for control of the coconut mite Aceria guerreronis Keifer, a serious pest of coconut fruits. At all locations surveyed, one of the most dominant predators on infested coconut fruits was identified as Neoseiulus baraki Athias-Henriot, based on morphological similarity with regard to taxonomically relevant characters. However, scrutiny of our own and published descriptions suggests that consistent morphological differences may exist between the Benin population and those from the other geographic origins. In this study, we combined three methods to assess whether these populations belong to one species or a few distinct, yet closely related species. First, multivariate analysis of 32 morphological characters showed that the Benin population differed from the other three populations. Second, DNA sequence analysis based on the mitochondrial cytochrome oxidase subunit I (COI) showed the same difference between these populations. Third, cross-breeding between populations was unsuccessful in all combinations. These data provide evidence for the existence of cryptic species. Subsequent morphological research showed that the Benin population can be distinguished from the others by a new character (not included in the multivariate analysis), viz. the number of teeth on the fixed digit of the female chelicera.
Resumo:
Natural parasitism of Diaphorina citri Kuwayama (Hemiptera, Psyllidae) nymphs by Tamarixia radiata Waterston (Hymenoptera, Eulophidae) in Sao Paulo orange groves. The psyllid Diaphorina citri Kuwayama 1908 has become the main citrus pest species in the state of Sao Paulo, Brazil, after the introduction of the huanglongbing or citrus greening. This study evaluated the parasitism of 3rd, 4th and 5th instar D. citri nymphs by Tamarixia radiata (Waterston, 1922) in citrus groves under a regimen of regular insecticide applications in ten producing regions: Araraquara, Barretos, Bauru, Botucatu, Franca, Itapetininga, Jau, Limeira, Lins and Sao Joao da Boa Vista. Sixty-nine samples of new branches infested with nymphs of D. citri were collected from 2005 to 2008 in orange groves ranging from 1 to 20 years old, of the varieties Hamlin, Pera, Valencia and Natal. The parasitoid T. radiata is widely distributed in Sao Paulo orange groves, and was identified in 50 (72%) of the samples, showing a mean parasitism rate of 12.4%. The highest parasitism rate was observed in the "summer" (from January through March), with a mean of 25.7%. Nymphal parasitism was above 90% in two samples. The probable causes of the variations in parasitism of D. citri by T. radiata are discussed.
Resumo:
Occurrence of Zoophthora radicans infecting nymphs and adults of Thaumastocoris peregrinus Carpintero and Dellape, 2006 is reported in Brazil. This is a new record of host for this fungal species and the first fungal pathogen associated with this pest worldwide. Infection of Z. radicans on T. peregrinus populations on commercial Eucalyptus plantation (Eucalyptus spp.) reached up to 100%, and low insect densities were associated with high levels of fungal infection in three out of seven plots. This pathogen seems to be virulent against T. peregrinus and may play an important role in population regulations of this invasive pest through naturally induced epizootics. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
The increasing resistance of Rhipicephalus (Boophilus) microplus tick to commercial insecticides requires alternative methods for the control of this cattle plague. The enthomopathogenic fungus Beauveria feline produces destruxins in culture media, cyclic depsipeptides which display an array of biological activities. The present investigation aimed to evaluate the acaricide action of destruxins isolated from B. felina culture media on R. (B.) microplus engorged females. B. felina was grown in MF medium under 19 different growth conditions. HPLC-PDA analysis of chromatographic fractions obtained from the 19 different growth media extracts indicated the presence of destruxins in all lipophylic fractions. Such fractions were combined and subjected to separation by HPLC. Fractions containing distinct destruxins composition were tested against R. (B.) micro plus. Two fractions, composed of destruxin Ed(1) and pseudodestruxin B and/or pseudodestruxin C (fraction P1) as well as by hydroxyhomodestruxin B and/or destruxin D and/or roseotoxin C (fraction P7), displayed 30% and 28.7% acaricidal efficacy, respectively. This activity profile in such low concentration is adequate to consider destruxins as potential leading compounds to be developed for tick biological control. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a survey of the insects that feed on fruits of Psittacanthus Martius (Santalales: Loranthaceae), a hemiparasitic mistletoe genus that infects trees in Brazil and other neotropical countries. The aim of the study was to identify candidate insects for biological control of Psittacanthus mistletoes. Unripe and mature fruits were collected in several localities of Cerrado, bordering South Pantanal, Southwestern Brazil, from 29 Apr 1998 to 30 Jul 2000. A total of 24,710 fruits (54 samples) of Psittacanthus acinarius infecting 15 species from 10 plant families were evaluated. Psittacanthus acinarius (Mart.) was the most abundant and frequent species of mistletoe parasitizing trees in the ecotonal Cerrado-Pantanal. From 24,710 fruits of Psittacanthus acinarius were obtained 1,812 insect larvae including 1,806 Neosilba McAlpine (Diptera: Lonchaeidae) species and 6 Thepytus echelta (Hewitson) (Lepidoptera: Lycaenidae). From these emerged 1,550 Neosilba spp. adults and 6 T. echelta. Neosilba pantanense Strikis was described from this research. Larvae of T. echelta occurred in fruits of P. acinarius parasitizing Cecropia pachystachya Trecul (Urticaceae) and Anadenanthera colubrina (Vellozo) Brenan (Fabaceae). Larvae of Neosilba caused no adverse effects on the germination of infected fruits of Psittacanthus, because they do not eat the embryo or viscin tissues. This differs from the larvae of T. echelta that interrupted the germination of seeds by feeding on those tissues. Thepytus echelta may be a promising insect for the biological control of P. acinarius in the ecotonal Cerrado-Pantanal, although its abundance and frequency were low throughout the sampling period.
Resumo:
Some species of Trichoderma have successfully been used in the commercial biological control of fungal pathogens, e.g., Sclerotinia sclerotiorum, an economically important pathogen of common beans (Phaseolus vulgaris L.). The objectives of the present study were (1) to provide molecular characterization of Trichoderma strains isolated from the Brazilian Cerrado; (2) to assess the metabolic profile of each strain by means of Biolog FF Microplates; and (3) to evaluate the ability of each strain to antagonize S. sclerotiorum via the production of cell wall-degrading enzymes (CWDEs), volatile antibiotics, and dual-culture tests. Among 21 isolates, we identified 42.86 % as Trichoderma asperellum, 33.33 % as Trichoderma harzianum, 14.29 % as Trichoderma tomentosum, 4.76 % as Trichoderma koningiopsis, and 4.76 % as Trichoderma erinaceum. Trichoderma asperellum showed the highest CWDE activity. However, no species secreted a specific group of CWDEs. Trichoderma asperellum 364/01, T. asperellum 483/02, and T. asperellum 356/02 exhibited high and medium specific activities for key enzymes in the mycoparasitic process, but a low capacity for antagonism. We observed no significant correlation between CWDE and antagonism, or between metabolic profile and antagonism. The diversity of Trichoderma species, and in particular of T. harzianum, was clearly reflected in their metabolic profiles. Our findings indicate that the selection of Trichoderma candidates for biological control should be based primarily on the environmental fitness of competitive isolates and the target pathogen. (C) 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.