941 resultados para binary mixtures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffraction gratings are not always ideal but, due to the fabrication process, several errors can be produced. In this work we show that when the strips of a binary phase diffraction grating present certain randomness in their height, the intensity of the diffraction orders varies with respect to that obtained with a perfect grating. To show this, we perform an analysis of the mutual coherence function and then, the intensity distribution at the far field is obtained. In addition to the far field diffraction orders, a "halo" that surrounds the diffraction order is found, which is due to the randomness of the strips height.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the far-field intensity distribution of binary phase gratings whose strips present certain randomness in their height. A statistical analysis based on the mutual coherence function is done in the plane just after the grating. Then, the mutual coherence function is propagated to the far field and the intensity distribution is obtained. Generally, the intensity of the diffraction orders decreases in comparison to that of the ideal perfect grating. Several important limit cases, such as low- and high-randomness perturbed gratings, are analyzed. In the high-randomness limit, the phase grating is equivalent to an amplitude grating plus a “halo.” Although these structures are not purely periodic, they behave approximately as a diffraction grating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For Supplementary Information, see http://sss.bnu.edu.cn/~wenxuw/publications/SI_reconstruct_binary.pdf

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Object-oriented design and object-oriented languages support the development of independent software components such as class libraries. When using such components, versioning becomes a key issue. While various ad-hoc techniques and coding idioms have been used to provide versioning, all of these techniques have deficiencies - ambiguity, the necessity of recompilation or re-coding, or the loss of binary compatibility of programs. Components from different software vendors are versioned at different times. Maintaining compatibility between versions must be consciously engineered. New technologies such as distributed objects further complicate libraries by requiring multiple implementations of a type simultaneously in a program. This paper describes a new C++ object model called the Shared Object Model for C++ users and a new implementation model called the Object Binary Interface for C++ implementors. These techniques provide a mechanism for allowing multiple implementations of an object in a program. Early analysis of this approach has shown it to have performance broadly comparable to conventional implementations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixtures of Zellner's g-priors have been studied extensively in linear models and have been shown to have numerous desirable properties for Bayesian variable selection and model averaging. Several extensions of g-priors to Generalized Linear Models (GLMs) have been proposed in the literature; however, the choice of prior distribution of g and resulting properties for inference have received considerably less attention. In this paper, we extend mixtures of g-priors to GLMs by assigning the truncated Compound Confluent Hypergeometric (tCCH) distribution to 1/(1+g) and illustrate how this prior distribution encompasses several special cases of mixtures of g-priors in the literature, such as the Hyper-g, truncated Gamma, Beta-prime, and the Robust prior. Under an integrated Laplace approximation to the likelihood, the posterior distribution of 1/(1+g) is in turn a tCCH distribution, and approximate marginal likelihoods are thus available analytically. We discuss the local geometric properties of the g-prior in GLMs and show that specific choices of the hyper-parameters satisfy the various desiderata for model selection proposed by Bayarri et al, such as asymptotic model selection consistency, information consistency, intrinsic consistency, and measurement invariance. We also illustrate inference using these priors and contrast them to others in the literature via simulation and real examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with the evaporation of non-ideal liquid mixtures using a multicomponent mass transfer approach. It develops the concept of evaporation maps as a convenient way of representing the dynamic composition changes of ternary mixtures during an evaporation process. Evaporation maps represent the residual composition of evaporating ternary non-ideal mixtures over the full range of composition, and are analogous to the commonly-used residue curve maps of simple distillation processes. The evaporation process initially considered in this work involves gas-phase limited evaporation from a liquid or wetted-solid surface, over which a gas flows at known conditions. Evaporation may occur into a pure inert gas, or into one pre-loaded with a known fraction of one of the ternary components. To explore multicomponent masstransfer effects, a model is developed that uses an exact solution to the Maxwell-Stefan equations for mass transfer in the gas film, with a lumped approach applied to the liquid phase. Solutions to the evaporation model take the form of trajectories in temperaturecomposition space, which are then projected onto a ternary diagram to form the map. Novel algorithms are developed for computation of pseudo-azeotropes in the evaporating mixture, and for calculation of the multicomponent wet-bulb temperature at a given liquid composition. A numerical continuation method is used to track the bifurcations which occur in the evaporation maps, where the composition of one component of the pre-loaded gas is the bifurcation parameter. The bifurcation diagrams can in principle be used to determine the required gas composition to produce a specific terminal composition in the liquid. A simple homotopy method is developed to track the locations of the various possible pseudo-azeotropes in the mixture. The stability of pseudo-azeotropes in the gas-phase limited case is examined using a linearized analysis of the governing equations. Algorithms for the calculation of separation boundaries in the evaporation maps are developed using an optimization-based method, as well as a method employing eigenvectors derived from the linearized analysis. The flexure of the wet-bulb temperature surface is explored, and it is shown how evaporation trajectories cross ridges and valleys, so that ridges and valleys of the surface do not coincide with separation boundaries. Finally, the assumption of gas-phase limited mass transfer is relaxed, by employing a model that includes diffusion in the liquid phase. A finite-volume method is used to solve the system of partial differential equations that results. The evaporation trajectories for the distributed model reduce to those of the lumped (gas-phase limited) model as the diffusivity in the liquid increases; under the same gas-phase conditions the permissible terminal compositions of the distributed and lumped models are the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der Müller und die fünf Räuber, Überfall²³

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most liquid electrolytes used in commercial lithium-ion batteries are composed by alkylcarbonate mixture containing lithium salt. The decomposition of these solvents by oxidation or reduction during cycling of the cell, induce generation of gases (CO2, CH4, C2H4, CO …) increasing of pressure in the sealed cell, which causes a safety problem [1]. The prior understanding of parameters, such as structure and nature of salt, temperature pressure, concentration, salting effects and solvation parameters, which influence gas solubility and vapor pressure of electrolytes is required to formulate safer and suitable electrolytes especially at high temperature.

We present in this work the CO2, CH4, C2H4, CO solubility in different pure alkyl-carbonate solvents (PC, DMC, EMC, DEC) and their binary or ternary mixtures as well as the effect of temperature and lithium salt LiX (X = LiPF6, LiTFSI or LiFAP) structure and concentration on these properties. Furthermore, in order to understand parameters that influence the choice of the structure of the solvents and their ability to dissolve gas through the addition of a salt, we firstly analyzed experimentally the transport properties (Self diffusion coefficient (D), fluidity (h-1), and conductivity (s) and lithium transport number (tLi) using the Stock-Einstein, and extended Jones-Dole equations [2]. Furthermore, measured data for the of CO2, C2H4, CH4 and CO solubility in pure alkylcarbonates and their mixtures containing LiPF6; LiFAP; LiTFSI salt, are reported as a function of temperature and concentration in salt. Based on experimental solubility data, the Henry’s law constant of gases in these solvents and electrolytes was then deduced and compared with values predicted by using COSMO-RS methodology within COSMOthermX software. From these results, the molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvents and electrolytes with the gases in its hypothetical liquid state were calculated and discussed [3]. Finally, the analysis of the CO2 solubility variations with the salt addition was then evaluated by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the gas solubility is entropy driven and can been influenced by the shape, charge density, and size of the anions in lithium salt.

References

[1] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Journal of the American Chemical Society 133 (2011) 8040-8047.

[2] P. Porion, Y.R. Dougassa, C. Tessier, L. El Ouatani, J. Jacquemin, M. Anouti, Electrochimica Acta 114 (2013) 95-104.

[3] Y.R. Dougassa, C. Tessier, L. El Ouatani, M. Anouti, J. Jacquemin, The Journal of Chemical Thermodynamics 61 (2013) 32-44.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present high-speed photometry and high-resolution spectroscopy of the eclipsing post-common-envelope binary QS Virginis (QS Vir). Our Ultraviolet and Visual Echelle Spectrograph (UVES) spectra span multiple orbits over more than a year and reveal the presence of several large prominences passing in front of both the M star and its white dwarf companion, allowing us to triangulate their positions. Despite showing small variations on a time-scale of days, they persist for more than a year and may last decades. One large prominence extends almost three stellar radii from the M star. Roche tomography reveals that the M star is heavily spotted and that these spots are long-lived and in relatively fixed locations, preferentially found on the hemisphere facing the white dwarf. We also determine precise binary and physical parameters for the system. We find that the 14 220 ± 350 K white dwarf is relatively massive, 0.782 ± 0.013 M⊙, and has a radius of 0.010 68 ± 0.000 07 R⊙, consistent with evolutionary models. The tidally distorted M star has a mass of 0.382 ± 0.006 M⊙ and a radius of 0.381 ± 0.003 R⊙, also consistent with evolutionary models. We find that the magnesium absorption line from the white dwarf is broader than expected. This could be due to rotation (implying a spin period of only ˜700 s), or due to a weak (˜100 kG) magnetic field, we favour the latter interpretation. Since the M star's radius is still within its Roche lobe and there is no evidence that it is overinflated, we conclude that QS Vir is most likely a pre-cataclysmic binary just about to become semidetached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, υ e sin i, of ~330 O-type objects, i.e. ~210 spectroscopic single stars and ~110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30 Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the υ e sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100 km s-1. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300 km s-1, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part - and could potentially be completely due - to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the design and characterisation of the rheological and mechanical properties of binary polymeric systems composed of 2-Hydroxypropylcellulose and ɩ-carrageenan, designed as ophthalmic viscoelastic devices (OVDs). Platforms were characterised using dilute solution, flow and oscillatory rheometry and texture profile analysis. Rheological synergy between the two polymers was observed both in the dilute and gel states. All platforms exhibited pseudoplastic flow. Increasing polymer concentrations significantly decreased the loss tangent and rate index yet increased the storage and loss moduli, consistency, gel hardness, compressibility and adhesiveness, the latter being related to the in-vivo retention properties of the platforms. Binary polymeric platforms exhibited unique physicochemical properties, properties that could not be engineered using mono-polymeric platforms. Using characterisation methods that provide information relevant to their clinical performance, low-cost binary platforms (3% hydroxypropylcellulose and either 1% or 2% ɩ-carrageenan) were identified that exhibited rheological, textural and viscoelastic properties advantageous for use as OVDs.