912 resultados para binary codes
Resumo:
Information-centric networking (ICN) has been proposed to cope with the drawbacks of the Internet Protocol, namely scalability and security. The majority of research efforts in ICN have focused on routing and caching in wired networks, while little attention has been paid to optimizing the communication and caching efficiency in wireless networks. In this work, we study the application of Raptor codes to Named Data Networking (NDN), which is a popular ICN architecture, in order to minimize the number of transmitted messages and accelerate content retrieval times. We propose RC-NDN, which is a NDN compatible Raptor codes architecture. In contrast to other coding-based NDN solutions that employ network codes, RC-NDN considers security architectures inherent to NDN. Moreover, different from existing network coding based solutions for NDN, RC-NDN does not require significant computational resources, which renders it appropriate for low cost networks. We evaluate RC-NDN in mobile scenarios with high mobility. Evaluations show that RC-NDN outperforms the original NDN significantly. RC-NDN is particularly efficient in dense environments, where retrieval times can be reduced by 83% and the number of Data transmissions by 84.5% compared to NDN.
Resumo:
contributed by the Very Rev, the Chief Rabbi (J. H. Hertz)
Resumo:
The International GNSS Service (IGS) issues four sets of so-called ultra-rapid products per day, which are based on the contributions of the IGS Analysis Centers. The traditional (“old”) ultra-rapid orbit and earth rotation parameters (ERP) solution of the Center for Orbit Determination in Europe (CODE) was based on the output of three consecutive 3-day long-arc rapid solutions. Information from the IERS Bulletin A was required to generate the predicted part of the old CODE ultra-rapid product. The current (“new”) product, activated in November 2013, is based on the output of exactly one multi-day solution. A priori information from the IERS Bulletin A is no longer required for generating and predicting the orbits and ERPs. This article discusses the transition from the old to the new CODE ultra-rapid orbit and ERP products and the associated improvement in reliability and performance. All solutions used in this article were generated with the development version of the Bernese GNSS Software. The package was slightly extended to meet the needs of the new CODE ultra-rapid generation.
Resumo:
The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009–2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft’s solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which substantially reduces the spurious signals in the geocenter coordinate z (by about a factor of 2–6), reduces the orbit misclosures at the day boundaries by about 10 %, slightly improves the consistency of the estimated ERPs with those of the IERS 08 C04 Earth rotation series, and substantially reduces the systematics in the SLR validation of the GNSS orbits.
Resumo:
Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative subset is challenging when the number of stocks in the index is large. We introduce a new three-stage approach that at first identifies promising subsets by employing data-mining techniques, then determines the stock weights in the subsets using mixed-binary linear programming, and finally evaluates the subsets based on cross validation. The best subset is returned as the tracking portfolio. Our approach outperforms state-of-the-art methods in terms of out-of-sample performance and running times.
Resumo:
Conditional mutagenesis using Cre recombinase expressed from tissue specific promoters facilitates analyses of gene function and cell lineage tracing. Here, we describe two novel dual-promoter-driven conditional mutagenesis systems designed for greater accuracy and optimal efficiency of recombination. Co-Driver employs a recombinase cascade of Dre and Dre-respondent Cre, which processes loxP-flanked alleles only when both recombinases are expressed in a predetermined temporal sequence. This unique property makes Co-Driver ideal for sequential lineage tracing studies aimed at unraveling the relationships between cellular precursors and mature cell types. Co-InCre was designed for highly efficient intersectional conditional transgenesis. It relies on highly active trans-splicing inteins and promoters with simultaneous transcriptional activity to reconstitute Cre recombinase from two inactive precursor fragments. By generating native Cre, Co-InCre attains recombination rates that exceed all other binary SSR systems evaluated in this study. Both Co-Driver and Co-InCre significantly extend the utility of existing Cre-responsive alleles.
Resumo:
Monte Carlo simulation has been conducted to investigate parameter estimation and hypothesis testing in some well known adaptive randomization procedures. The four urn models studied are Randomized Play-the-Winner (RPW), Randomized Pôlya Urn (RPU), Birth and Death Urn with Immigration (BDUI), and Drop-the-Loses Urn (DL). Two sequential estimation methods, the sequential maximum likelihood estimation (SMLE) and the doubly adaptive biased coin design (DABC), are simulated at three optimal allocation targets that minimize the expected number of failures under the assumption of constant variance of simple difference (RSIHR), relative risk (ORR), and odds ratio (OOR) respectively. Log likelihood ratio test and three Wald-type tests (simple difference, log of relative risk, log of odds ratio) are compared in different adaptive procedures. ^ Simulation results indicates that although RPW is slightly better in assigning more patients to the superior treatment, the DL method is considerably less variable and the test statistics have better normality. When compared with SMLE, DABC has slightly higher overall response rate with lower variance, but has larger bias and variance in parameter estimation. Additionally, the test statistics in SMLE have better normality and lower type I error rate, and the power of hypothesis testing is more comparable with the equal randomization. Usually, RSIHR has the highest power among the 3 optimal allocation ratios. However, the ORR allocation has better power and lower type I error rate when the log of relative risk is the test statistics. The number of expected failures in ORR is smaller than RSIHR. It is also shown that the simple difference of response rates has the worst normality among all 4 test statistics. The power of hypothesis test is always inflated when simple difference is used. On the other hand, the normality of the log likelihood ratio test statistics is robust against the change of adaptive randomization procedures. ^
Resumo:
Logistic regression is one of the most important tools in the analysis of epidemiological and clinical data. Such data often contain missing values for one or more variables. Common practice is to eliminate all individuals for whom any information is missing. This deletion approach does not make efficient use of available information and often introduces bias.^ Two methods were developed to estimate logistic regression coefficients for mixed dichotomous and continuous covariates including partially observed binary covariates. The data were assumed missing at random (MAR). One method (PD) used predictive distribution as weight to calculate the average of the logistic regressions performing on all possible values of missing observations, and the second method (RS) used a variant of resampling technique. Additional seven methods were compared with these two approaches in a simulation study. They are: (1) Analysis based on only the complete cases, (2) Substituting the mean of the observed values for the missing value, (3) An imputation technique based on the proportions of observed data, (4) Regressing the partially observed covariates on the remaining continuous covariates, (5) Regressing the partially observed covariates on the remaining continuous covariates conditional on response variable, (6) Regressing the partially observed covariates on the remaining continuous covariates and response variable, and (7) EM algorithm. Both proposed methods showed smaller standard errors (s.e.) for the coefficient involving the partially observed covariate and for the other coefficients as well. However, both methods, especially PD, are computationally demanding; thus for analysis of large data sets with partially observed covariates, further refinement of these approaches is needed. ^
Resumo:
My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.
Resumo:
Fil: Vicente, Sonia.