976 resultados para beta-blocker therapy


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first spectroscopic study for the beta decay of N-21 is carried out based on beta-n, beta-gamma, and beta-n-gamma coincidence measurements. The neutron-rich N-21 nuclei are produced by the fragmentation of the E/A=68.8 MeV Mg-26 primary beam on a thick Be-9 target and are implanted into a thin plastic scintillator that also plays the role of beta detector. The time of flight of the emitted neutrons following the beta decay are measured by the surrounding neutron sphere and neutron wall arrays. In addition, four clover germanium detectors are used to detect the beta-delayed gamma rays. Thirteen new beta-delayed neutron groups are observed with a total branching ratio of 90.5 +/- 4.2%. The half-life for the beta decay of N-21 is determined to be 82.9 +/- 7.5 ms. The level scheme of O-21 is deduced up to about 9 MeV excitation energy. The experimental results for the beta decay of N-21 are compared to the shell-model calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous experimental results of (EC+beta(+)) decay for the medium-heavy nuclei reported by our group since 1996, including Er-153, Yb-157, Fr-209, Ce-128, Ce-130, and Pr-128 have been briefly summarized. The observed low-lying states in their daughter nuclei have been reviewed in a systematic way and compared with different model calculations. Finally, some questions have been put forward for further study and discussion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Baryon magnetic moments of p, n, Sigma(+), Sigma(-), Xi(0), Xi(-) and the beta decay ratios (G(A)/G(V)) of n -> p, Sigma(-) -> n and Xi(0) -> Sigma(+) are calculated in a colored quark cluster model. With SU(3) breaking, the model gives a good fit to the experimental values of those baryon magnetic moments and the beta decay ratios. Our results show that the orbital motion has a significant contribution to the spin and magnetic moments of those baryons and the strange component. in nucleon is small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The beta-delayed neutron and gamma energy spectra taken from the decay of neutron-rich nucleus N-21 were measured by using the beta - gamma and beta - n coincidence detection method. Thirteen new neutron groups ranging from 0.28MeV to 4.98 MeV and with a total branching ratio of 88.7 +/- 4.2% were observed and presented. One gamma transition with an energy of 1222 keV emitted from the excited state of O-21, and four gamma transitions with energies of 1674, 2397, 2780, and 3175 keV emitted from the excited states of O-20 were identified in the 3 decay chain of N-21. The beta decay half-life for N-21 is determined to be 82.9 +/- 1.9 ms. The uncertainty of half-life is much smaller than the previous result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The status of heavy-ion cancer therapy has been reviewed. The existing and constructing heavy-ion beam facilities for cancer therapy in the world are introduced. The first clinical trials of superficially placed tumor therapy at heavy ion research facility in Lanzhou (HIRFL) are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic process of an exotic decay mode namely P-delayed fission is simply introduced. The progress status of the study in the world is essentialized. The observation of P-delayed fission of Ac-228 is reported. The radium was radiochemically separated from natural thorium. Thin Ra sources in which Ac-228 was got through Ra-228 ->(beta-) Ac-228 were prepared for observing fission fragments from beta-delayed fission Ac-228. They exposed to the mica fission track detectors, and measured by an HPGe gamma-ray detector. The beta-delayed fission events of Ac-228 were observed and its beta-delayed fission probability was found to be (5 +/- 2) x 10(-12).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment planning of heavy-ion radiotherapy involves predictive calculation of not only the physical dose but also the biological dose in a patient body. The goal in designing beam-modulating devices for heavy ion therapy is to achieve uniform biological effects across the spread-out Bragg peak (SOBP). To achieve this, a mathematical model of Bragg peak movement is presented. The parameters of this model have been resolved with Monte Carlo method. And a rotating wheel filter is designed basing on the velocity of the Bragg peak movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synchrotron is designed for tumour therapy with C6+ ions or proton. Its injector is a cyclotron, which delivers C5+ or H-2(+) ions to the synchrotron. After comparing the methods of the single-turn injection, the multi-turn injection and the stripping injection, this paper chooses the stripping injection method. In addition, the concept design of the injection system is presented, in which the synchrotron lattice is optimized.