992 resultados para basal-like tumors
Resumo:
BACKGROUND: Since 1981 Princess Margaret Hospital has used initial active surveillance (AS) with delayed treatment at relapse as the preferred management for all patients with clinical stage I nonseminomatous germ cell tumors (NSGCT). OBJECTIVE: Our aim was to report our overall AS experience and compare outcomes over different periods using this non-risk-adapted approach. DESIGN, SETTING, AND PARTICIPANTS: Three hundred and seventy-one patients with stage I NSGCT were managed by AS from 1981 to 2005. For analysis by time period, patients were divided into two cohorts by diagnosis date: initial cohort, 1981-1992 (n=157), and recent cohort, 1993-2005 (n=214). INTERVENTION: Patients were followed at regular intervals, and treatment was only given for relapse. MEASUREMENTS: Recurrence rates, time to relapse, risk factors for recurrence, disease-specific survival, and overall survival were determined. RESULTS AND LIMITATIONS: With a median follow-up of 6.3 yr, 104 patients (28%) relapsed: 53 of 157 (33.8%) in the initial group and 51 of 214 (23.8%) in the recent group. Median time to relapse was 7 mo. Lymphovascular invasion (p<0.0001) and pure embryonal carcinoma (p=0.02) were independent predictors of recurrence; 125 patients (33.7%) were designated as high risk based on the presence of one or both factors. In the initial cohort, 66 of 157 patients (42.0%) were high risk and 36 of 66 patients (54.5%) relapsed versus 17 of 91 low-risk patients (18.7%) (p<0.0001). In the recent cohort, 59 of 214 patients (27.6%) were high risk and 29 of 59 had a recurrence (49.2%) versus 22 of 155 low-risk patients (14.2%) (p<0.0001). Three patients (0.8%) died from testis cancer. The estimated 5-yr disease-specific survival was 99.3% in the initial group and 98.9% in the recent one. CONCLUSIONS: Non-risk-adapted surveillance is an effective, simple strategy for the management of all stage I NSGCT.
Resumo:
To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2(Q150/Q150), 18-month Hdh(Q92/Q92) and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.
Resumo:
Converging evidence suggests that recurrent excessive calorie restriction causes binge eating by promoting behavioral disinhibition and overeating. This interpretation suggests that cognitive adaptations may surpass physiological regulations of metabolic needs after recurrent cycles of dieting and binging. Intermittent access to palatable food has long been studied in rats, but the consequences of such diet cycling procedures on the cognitive control of food seeking remain unclear. Female Wistar rats were divided in two groups matched for food intake and body weight. One group received standard chow pellets 7 days/week, whereas the second group was given chow pellets for 5 days and palatable food for 2 days over seven consecutive weeks. Rats were also trained for operant conditioning. Intermittent access to palatable food elicited binging behavior and reduced intake of normal food. Rats with intermittent access to palatable food failed to exhibit anxiety-like behaviors in the elevated plus maze, but displayed reduced locomotor activity in the open field and developed a blunted corticosterone response following an acute stress across the diet procedure. Trained under a progressive ratio schedule, both groups exhibited the same motivation for sweetened food pellets. However, in contrast to controls, rats with a history of dieting and binging exhibited a persistent compulsive-like behavior when access to preferred pellets was paired with mild electrical foot shock punishments. These results highlight the intricate development of anxiety-like disorders and cognitive deficits leading to a loss of control over preferred food intake after repetitive cycles of intermittent access to palatable food.
Resumo:
Glucagon-like peptide-1 (GLP-1) is the most potent stimulator of glucose-induced insulin secretion and its pancreatic beta-cell receptor is a member of a new subfamily of G-protein-coupled receptors which includes the receptors for vasoactive intestinal polypeptide, secretin and glucagon. Here we studied agonist-induced GLP-1 receptor internalization in receptor-transfected Chinese hamster lung fibroblasts using three different approaches. First, iodinated GLP-1 bound at 4 degrees C to transfected cells was internalized with a t 1/2 of 2-3 min following warming up of the cells to 37 degrees C. Secondly, exposure to GLP-1 induced a shift in the distribution of the receptors from plasma membrane-enriched to endosomes-enriched membrane fractions, as assessed by Western blot detection of the receptors using specific antibodies. Thirdly, continuous exposure of GLP-1 receptor-expressing cells to iodinated GLP-1 led to a linear accumulation of peptide degradation products in the medium following a lag time of 20-30 min, indicating a continuous cycling of the receptor between the plasma membrane and endosomal compartments. Potassium depletion and hypertonicity inhibited transferrin endocytosis, a process known to occur via coated pit formation, as well as GLP-1 receptor endocytosis. In contrast to GLP-1, the antagonist exendin-(9-39) did not lead to receptor endocytosis. Surface re-expression following one round of GLP-1 receptor endocytosis occurred with a half-time of about 15 min. The difference in internalization and surface re-expression rates led to a progressive redistribution of the receptor in intracellular compartments upon continuous exposure to GLP-1. Finally, endogenous GLP-1 receptors expressed by insulinoma cells were also found to be internalized upon agonist binding. Together our data demonstrate that the GLP-1 receptor is internalized upon agonist binding by a route similar to that taken by single transmembrane segment receptors. The characterization of the pathway and kinetics of GLP-1-induced receptor endocytosis will be helpful towards understanding the role of internalization and recycling in the control of signal transduction by this receptor.
Resumo:
Levels of the enzymes that produce wound response mediators have to be controlled tightly in unwounded tissues. The Arabidopsis (Arabidopsis thaliana) fatty acid oxygenation up-regulated8 (fou8) mutant catalyzes high rates of alpha -linolenic acid oxygenation and has higher than wild-type levels of the alpha -linolenic acid-derived wound response mediator jasmonic acid (JA) in undamaged leaves. fou8 produces a null allele in the gene SAL1 (also known as FIERY1 or FRY1). Overexpression of the wild-type gene product had the opposite effect of the null allele, suggesting a regulatory role of SAL1 acting in JA synthesis. The biochemical phenotypes in fou8 were complemented when the yeast (Saccharomyces cerevisiae) sulfur metabolism 3'(2'), 5'-bisphosphate nucleotidase MET22 was targeted to chloroplasts in fou8. The data are consistent with a role of SAL1 in the chloroplast-localized dephosphorylation of 3'-phospho-5'-adenosine phosphosulfate to 5'-adenosine phosphosulfate or in a closely related reaction (e.g. 3',5'-bisphosphate dephosphorylation). Furthermore, the fou8 phenotype was genetically suppressed in a triple mutant (fou8 apk1 apk2) affecting chloroplastic 3'-phospho-5'-adenosine phosphosulfate synthesis. These results show that a nucleotide component of the sulfur futile cycle regulates early steps of JA production and basal JA levels.
Resumo:
Background. Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to modulate multiple cellular processes, including apoptosis. The aim of this study was to assess the effects of HCV NS5A on apoptosis induced by Toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). Methods. Apoptotic responses to TLR4 ligands and the expression of molecules involved in TLR signaling pathways in human hepatocytes were examined with or without expression of HCV NS5A. Results. HCV NS5A protected HepG2 hepatocytes against LPS-induced apoptosis, an effect linked to reduced TLR4 expression. A similar downregulation of TLR4 expression was observed in Huh-7-expressing genotype 1b and 2a. In agreement with these findings, NS5A inhibited the expression of numerous genes encoding for molecules involved in TLR4 signaling, such as CD14, MD-2, myeloid differentiation primary response gene 88, interferon regulatory factor 3, and nuclear factor-κB2. Consistent with a conferred prosurvival advantage, NS5A diminished the poly(adenosine diphosphate-ribose) polymerase cleavage and the activation of caspases 3, 7, 8, and 9 and increased the expression of anti-apoptotic molecules Bcl-2 and c-FLIP. Conclusions. HCV NS5A downregulates TLR4 signaling and LPS-induced apoptotic pathways in human hepatocytes, suggesting that disruption of TLR4-mediated apoptosis may play a role in the pathogenesis of HCV infection.
Resumo:
Although radiolabelled monoclonal antibodies are useful in tumor imaging, in our opinion their most important role is in the evaluation of the capacity of newly developed monoclonal antibodies to localize in tumors specifically. Intravenous injections of monoclonal antibody fragments, labelled with beta-emitting radionuclides, can completely eradicate large human colon carcinoma xenografts in nude mice whereas this is not achieved by unconjugated monoclonal antibodies. New strategies are being developed to make radioimmunotherapy applicable to carcinoma patients.
Resumo:
Brain-derived neurotrophic factor (BDNF) is a protein capable of supporting the survival and fiber outgrowth of peripheral sensory neurons. It has been argued that histological detection of BDNF has proven difficult because of its low molecular weight and relatively low expression. In the present study we report that rapid removal of dorsal root ganglia (DRG) from the rat, followed by rapid freezing and appropriate fixation with cold acetone, preserves BDNF in situ without altering protein antigenicity. Under these conditions, specific BDNF-like immunoreactivity was detected in DRG both in vivo and in vitro. During DRG development in vivo, BDNF-like immunoreactivity (BDNF-LI) was observed only in a subset of sensory neurons. BDNF-LI was confined to small neurons, after neurons became morphologically distinct on the basis of size. BDNF-L immunoprecipitate was detected only in neuronal cells, and not in satellite or Schwann cells. While in vivo BDNF localization was restricted to small neurons, practically all neurons in DRG cell culture displayed BDNF-LI. Small or large primary afferent neurons exhibited a faint but clear BDNF-LI during the whole life span of cultures. Again, non-neuronal cells were devoid of BDNF-LI. In conclusion, in DRG in vivo, specific BDNF-LI was confined to small B sensory neurons. In contrast, all DRG sensory neurons displayed BDNF-LI in vitro. The finding that BDNF expressed in all DRG neurons in vitro but not in vivo suggests that BDNF expression may be modulated by environmental factors.
Resumo:
Nilotinib, a novel tyrosine kinase inhibitor (TKI) that inhibits BCR-ABL, the stem cell factor receptor (KIT), and platelet-derived growth factor receptor-alpha (PDGFRα), is approved for the treatment of patients with newly diagnosed Philadelphia chromosome-positive chronic myelogenous leukemia (CML) and those with CML that is imatinib-resistant or -intolerant. Due to its potent inhibition of KIT and PDGFRα--the two tyrosine kinases that are the central oncogenic mechanisms of gastrointestinal stromal tumors (GIST)--nilotinib also has been investigated for potential efficacy and safety in patients with GIST who have progressed on other approved treatments. Initial results have been encouraging, as nilotinib has demonstrated clinical efficacy and safety in a phase I trial as either a single agent or in combination with imatinib, as well as in heavily pretreated patients with GIST in a compassionate use program. In addition, the phase III trial of nilotinib versus best supportive care (with or without a TKI at the investigator's discretion) indicated that nilotinib may have efficacy in some third-line patients. Furthermore, the Evaluating Nilotinib Efficacy and Safety in Clinical Trials (ENEST g1 trial), a phase III randomized, open-label study comparing the safety and efficacy of imatinib versus nilotinib in the first-line treatment of patients with GIST, is currently under way. Other studies with nilotinib either have been initiated or are in development. Based on published and accruing clinical data, nilotinib shows potential as a new drug in the clinician's armamentarium for the management of GIST.
Resumo:
Natural killer T (NKT) cells express a T cell receptor (TCR) and markers common to NK cells, including NK1.1. In vivo, NKT cells are triggered by anti-CD3epsilon MAb to rapidly produce large amounts of IL-4 and by IL-12 to reject tumors. We show here that anti-CD3epsilon MAb treatment rapidly depletes the liver (and partially the spleen) of NKT cells and that homeostasis is achieved 1 to 2 days later via NKT cell proliferation that occurs mainly in bone marrow. Similar results were obtained in mice treated with IL-12. Collectively, our data demonstrate that peripheral NKT cells are highly sensitive to activation-induced cell death and that bone marrow plays a major role in restoring NKT cell homeostasis.
Resumo:
We have recently shown that nasal immunization of anesthetized mice with human papillomavirus type 16 (HPV16) virus-like particles (VLPs) is highly effective at inducing both neutralizing immunoglobulin A (IgA) and IgG in genital secretions, while parenteral immunization induced only neutralizing IgG. Our data also demonstrated that both isotypes are similarly neutralizing according to an in vitro pseudotyped neutralization assay. However, it is known that various amounts of IgA and IgG are produced in genital secretions along the estrous cycle. Therefore, we have investigated how this variation influences the amount of HPV16 neutralizing antibodies induced after immunization with VLPs. We have compared parenteral and nasal protocols of vaccination with daily samplings of genital secretions of mice. Enzyme-linked immunosorbent assay analysis showed that total IgA and IgG inversely varied along the estrous cycle, with the largest amounts of IgA in proestrus-estrus and the largest amount of IgG in diestrus. This resulted in HPV16 neutralizing titers of IgG only being achieved during diestrus upon parenteral immunization. In contrast, nasal vaccination induced neutralizing titers of IgA plus IgG throughout the estrous cycle, as confirmed by in vitro pseudotyped neutralization assays. Our data suggest that mucosal immunization might be more efficient than parenteral immunization at inducing continuous protection of the female genital tract.
Resumo:
We studied the effects of temperature and pH on larval development, settlement and juvenile survival of a Mediterranean population of the sea urchin Arbacia lixula. Three temperatures (16, 17.5 and 19 °C) were tested at present pH conditions (pHT 8.1). At 19 °C, two pH levels were compared to reflect present average (pHT 8.1) and near-future average conditions (pHT 7.7, expected by 2100). Larvae were reared for 52-days to achieve the full larval development and complete the metamorphosis to the settler stage. We analyzed larval survival, growth, morphology and settlement success. We also tested the carry-over effect of acidification on juvenile survival after 3 days. Our results showed that larval survival and size significantly increased with temperature. Acidification resulted in higher survival rates and developmental delay. Larval morphology was significantly altered by low temperatures, which led to narrower larvae with relatively shorter skeletal rods, but larval morphology was only marginally affected by acidification. No carry-over effects between larvae and juveniles were detected in early settler survival, though settlers from larvae reared at pH 7.7 were significantly smaller than their counterparts developed at pH 8.1. These results suggest an overall positive effect of environmental parameters related to global change on the reproduction of A. lixula, and reinforce the concerns about the increasing negative impact on shallow Mediterranean ecosystems of this post-glacial colonizer.