967 resultados para barycentric weights
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.
Resumo:
Differential geometry is used to investigate the structure of neural-network-based control systems. The key aspect is relative order—an invariant property of dynamic systems. Finite relative order allows the specification of a minimal architecture for a recurrent network. Any system with finite relative order has a left inverse. It is shown that a recurrent network with finite relative order has a local inverse that is also a recurrent network with the same weights. The results have implications for the use of recurrent networks in the inverse-model-based control of nonlinear systems.
Resumo:
We show that for any sample size, any size of the test, and any weights matrix outside a small class of exceptions, there exists a positive measure set of regression spaces such that the power of the Cli-Ord test vanishes as the autocorrelation increases in a spatial error model. This result extends to the tests that dene the Gaussian power envelope of all invariant tests for residual spatial autocorrelation. In most cases, the regression spaces such that the problem occurs depend on the size of the test, but there also exist regression spaces such that the power vanishes regardless of the size. A characterization of such particularly hostile regression spaces is provided.
Resumo:
In financial decision-making processes, the adopted weights of the objective functions have significant impacts on the final decision outcome. However, conventional rating and weighting methods exhibit difficulty in deriving appropriate weights for complex decision-making problems with imprecise information. Entropy is a quantitative measure of uncertainty and has been useful in exploring weights of attributes in decision making. A fuzzy and entropy-based mathematical approach is employed to solve the weighting problem of the objective functions in an overall cash-flow model. The multiproject being undertaken by a medium-size construction firm in Hong Kong was used as a real case study to demonstrate the application of entropy. Its application in multiproject cash flow situations is demonstrated. The results indicate that the overall before-tax profit was HK$ 0.11 millions lower after the introduction of appropriate weights. In addition, the best time to invest in new projects arising from positive cash flow was identified to be two working months earlier than the nonweight system.
Resumo:
Neurofuzzy modelling systems combine fuzzy logic with quantitative artificial neural networks via a concept of fuzzification by using a fuzzy membership function usually based on B-splines and algebraic operators for inference, etc. The paper introduces a neurofuzzy model construction algorithm using Bezier-Bernstein polynomial functions as basis functions. The new network maintains most of the properties of the B-spline expansion based neurofuzzy system, such as the non-negativity of the basis functions, and unity of support but with the additional advantages of structural parsimony and Delaunay input space partitioning, avoiding the inherent computational problems of lattice networks. This new modelling network is based on the idea that an input vector can be mapped into barycentric co-ordinates with respect to a set of predetermined knots as vertices of a polygon (a set of tiled Delaunay triangles) over the input space. The network is expressed as the Bezier-Bernstein polynomial function of barycentric co-ordinates of the input vector. An inverse de Casteljau procedure using backpropagation is developed to obtain the input vector's barycentric co-ordinates that form the basis functions. Extension of the Bezier-Bernstein neurofuzzy algorithm to n-dimensional inputs is discussed followed by numerical examples to demonstrate the effectiveness of this new data based modelling approach.
Resumo:
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Resumo:
A new structure of Radial Basis Function (RBF) neural network called the Dual-orthogonal RBF Network (DRBF) is introduced for nonlinear time series prediction. The hidden nodes of a conventional RBF network compare the Euclidean distance between the network input vector and the centres, and the node responses are radially symmetrical. But in time series prediction where the system input vectors are lagged system outputs, which are usually highly correlated, the Euclidean distance measure may not be appropriate. The DRBF network modifies the distance metric by introducing a classification function which is based on the estimation data set. Training the DRBF networks consists of two stages. Learning the classification related basis functions and the important input nodes, followed by selecting the regressors and learning the weights of the hidden nodes. In both cases, a forward Orthogonal Least Squares (OLS) selection procedure is applied, initially to select the important input nodes and then to select the important centres. Simulation results of single-step and multi-step ahead predictions over a test data set are included to demonstrate the effectiveness of the new approach.
Resumo:
One of the most pervading concepts underlying computational models of information processing in the brain is linear input integration of rate coded uni-variate information by neurons. After a suitable learning process this results in neuronal structures that statically represent knowledge as a vector of real valued synaptic weights. Although this general framework has contributed to the many successes of connectionism, in this paper we argue that for all but the most basic of cognitive processes, a more complex, multi-variate dynamic neural coding mechanism is required - knowledge should not be spacially bound to a particular neuron or group of neurons. We conclude the paper with discussion of a simple experiment that illustrates dynamic knowledge representation in a spiking neuron connectionist system.
Resumo:
We consider the problem of scattering of time harmonic acoustic waves by an unbounded sound soft surface which is assumed to lie within a finite distance of some plane. The paper is concerned with the study of an equivalent variational formulation of this problem set in a scale of weighted Sobolev spaces. We prove well-posedness of this variational formulation in an energy space with weights which extends previous results in the unweighted setting [S. Chandler-Wilde and P. Monk, SIAM J. Math. Anal., 37 (2005), pp. 598–618] to more general inhomogeneous terms in the Helmholtz equation. In particular, in the two-dimensional case, our approach covers the problem of plane wave incidence, whereas in the three-dimensional case, incident spherical and cylindrical waves can be treated. As a further application of our results, we analyze a finite section type approximation, whereby the variational problem posed on an infinite layer is approximated by a variational problem on a bounded region.
Resumo:
The Gram-Schmidt (GS) orthogonalisation procedure has been used to improve the convergence speed of least mean square (LMS) adaptive code-division multiple-access (CDMA) detectors. However, this algorithm updates two sets of parameters, namely the GS transform coefficients and the tap weights, simultaneously. Because of the additional adaptation noise introduced by the former, it is impossible to achieve the same performance as the ideal orthogonalised LMS filter, unlike the result implied in an earlier paper. The authors provide a lower bound on the minimum achievable mean squared error (MSE) as a function of the forgetting factor λ used in finding the GS transform coefficients, and propose a variable-λ algorithm to balance the conflicting requirements of good tracking and low misadjustment.
Resumo:
This paper analyzes the convergence behavior of the least mean square (LMS) filter when used in an adaptive code division multiple access (CDMA) detector consisting of a tapped delay line with adjustable tap weights. The sampling rate may be equal to or higher than the chip rate, and these correspond to chip-spaced (CS) and fractionally spaced (FS) detection, respectively. It is shown that CS and FS detectors with the same time-span exhibit identical convergence behavior if the baseband received signal is strictly bandlimited to half the chip rate. Even in the practical case when this condition is not met, deviations from this observation are imperceptible unless the initial tap-weight vector gives an extremely large mean squared error (MSE). This phenomenon is carefully explained with reference to the eigenvalues of the correlation matrix when the input signal is not perfectly bandlimited. The inadequacy of the eigenvalue spread of the tap-input correlation matrix as an indicator of the transient behavior and the influence of the initial tap weight vector on convergence speed are highlighted. Specifically, a initialization within the signal subspace or to the origin leads to very much faster convergence compared with initialization in the a noise subspace.
Resumo:
In this paper, we propose a new on-line learning algorithm for the non-linear system identification: the swarm intelligence aided multi-innovation recursive least squares (SI-MRLS) algorithm. The SI-MRLS algorithm applies the particle swarm optimization (PSO) to construct a flexible radial basis function (RBF) model so that both the model structure and output weights can be adapted. By replacing an insignificant RBF node with a new one based on the increment of error variance criterion at every iteration, the model remains at a limited size. The multi-innovation RLS algorithm is used to update the RBF output weights which are known to have better accuracy than the classic RLS. The proposed method can produces a parsimonious model with good performance. Simulation result are also shown to verify the SI-MRLS algorithm.
Resumo:
1. Nicotine has been implicated as a causative factor in the intrauterine growth retardation associated with smoking in pregnancy. A study was set up to ascertain the effect of nicotine on fetal growth and whether this could be related to the actions of this drug on maternal adipose tissue metabolism. 2. Sprague-Dawley rats were mated and assigned to control and nicotine groups, the latter receiving nicotine in the drinking-water throughout pregnancy. Animals were weighed at regular intervals and killed on day 20 of pregnancy. Rates of maternal adipose tissue lipolysis and lipogenesis were measured. Fetal and placental weights were recorded and analysis of fetal body water, fat, protein and DNA carried out. 3. Weight gains of mothers in the nicotine group were less in the 1st and 2nd weeks of pregnancy, but similar to controls in the 3rd week. Fetal body-weights, DNA, protein and percentage water contents were similar in both groups. Mean fetal body fat (g/kg) was significantly higher in the nicotine group (96.2 (SE 5.1)) compared with controls (72.0 (SE 2.9)). Rates of maternal lipolysis were also higher in the nicotine group. 4. The cause of these differences and their effects on maternal and fetal well-being is discussed.
Resumo:
A new sparse kernel probability density function (pdf) estimator based on zero-norm constraint is constructed using the classical Parzen window (PW) estimate as the target function. The so-called zero-norm of the parameters is used in order to achieve enhanced model sparsity, and it is suggested to minimize an approximate function of the zero-norm. It is shown that under certain condition, the kernel weights of the proposed pdf estimator based on the zero-norm approximation can be updated using the multiplicative nonnegative quadratic programming algorithm. Numerical examples are employed to demonstrate the efficacy of the proposed approach.