973 resultados para arctic tundra
Nematode genera abundances at the Arctic Håkon Mosby Mud Volcano (HMMV) of sediment core PS64/390-1a
Nematode genera abundances at the Arctic Håkon Mosby Mud Volcano (HMMV) of sediment core PS64/363-1b
Nematode genera abundances at the Arctic Håkon Mosby Mud Volcano (HMMV) of sediment core PS64/363-1a
Resumo:
Knowledge of the long-term history of the perennial ice is an important issue that has eluded study because the Cenozoic core material needed has been unavailable until the recent Arctic Coring Expedition (ACEX). Detrital Fe oxide mineral grains analyzed by microprobe from the last 14 Ma (164 m) of the ACEX composite core on the Lomonosov Ridge were matched to circum-Arctic sources with the same mineral and 12-element composition. These precise source determinations and estimates of drift rates were used to determine that these sand grains could not be rafted to the ACEX core site in less than a year. Thus the perennial ice cover has existed since 14 Ma except for the unlikely rapid return to seasonal ice between the average sampling interval of about 0.17 Ma. Both North America and Russia contributed significant Fe grains to the ACEX core during the last 14 Ma.
Resumo:
Owing to limited knowledge of the habitat use and diet of juvenile Arctic charr from the High Arctic, particularly young-of-the-year (YOY), we assembled data obtained from samples taken in and around Lake Hazen, Nunavut, Canada, to assess juvenile habitat use and feeding. Juvenile charr demonstrated a preference for stream environments, particularly those fed by warm upstream ponds. Charr occupying both stream and nearshore lake habitats were found to feed similarly, with chironomids occurring most frequently in diets. Some older stream-dwelling charr preyed on smaller, younger Arctic charr. Preferred stream occupancy is likely mediated by physical barriers created mainly by water velocity, and by distance from the lake, lake-ice dynamics, low water depth, and turbidity. Water velocities resulted in stream habitat segregation by size, with YOY mainly found in low-velocity pools and back eddies adjacent to stream banks, but not in water velocities >0.1 m/s. Greatest charr densities in streams were found in small, shallow, slow-flowing side channels, which are highly susceptible to drought. Under predicted climate change scenarios, streams fed by small ponds will be susceptible to intermittent flow conditions, which could result in increased competition among juvenile charr for the remaining stream habitats. In addition, glacier-fed streams are likely to experience increased flow conditions that will exacerbate physical barriers created by water velocity and further reduce the availability of preferred stream habitat.
Resumo:
Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon.
Resumo:
The influence of salinity, temperature and prey availability on the marine migration of anadromous fishes was determined by describing the movements, habitat use and feeding behaviours of Arctic char (Salvelinus alpinus). The objectives were to determine whether char are restricted to the upper water column of the inter-/subtidal zones due to warmer temperatures. Twenty-seven char were tracked with acoustic temperature/pressure (depth) transmitters from June to September, 2008/2009, in inner Frobisher Bay, Canada. Most detections were in surface waters (0-3 m). Inter-/subtidal movements and consecutive repetitive dives (maximum 52.8 m) resulted in extreme body temperature shifts (-0.2-18.1 °C). Approximately half of intertidal and subtidal detections were between 9-13 °C and 1-3 °C, respectively. Stomach contents and deep diving suggested feeding in both inter-/subtidal zones. We suggest that char tolerate cold water at depth to capture prey in the subtidal zone, then seek warmer water to enhance feeding/digestion physiology.
Resumo:
Reliable information of past vegetation changes are important to project future changes, especially for areas undergoing rapid transitioning such as the boreal treeline. The application of detailed sedDNA records has the potential to enhance our understanding of vegetation changes gained mainly from pollen studies of lake sediments. This study investigates sedDNA and pollen records from 31 lakes along a gradient of increasing larch forest cover in northern Siberia (Taymyr Peninsula) and compares them with vegetation field surveys within the lake's catchment. With respect to vegetation richness, sedDNA recorded 114 taxa, about half of them to species level, while pollen analyses identified 43 pollen taxa. Both approaches exceed the 31 taxa revealed by vegetation field surveys of 400 m**2 plots. From north to south, Larix percentages increase, as is consistently recorded by all three methods. Furthermore, tundra sites are separated from forested sites in the plots of the principal component analyses. Comparison of ordination results by Procrustes and Protest analyses yields a significant fit among all compared pairs of records. Despite the overall comparability of sedDNA and pollen analyses certain idiosyncrasies in the compositional signal are observed, such as high percentages of Alnus and Betula in all pollen spectra and high percentages of Salix in all sedDNA spectra. In conclusion, our results from the treeline show that sedDNA analyses perform better than pollen in recording site-specific richness (i.e. presence/absence of certain vegetation taxa in the direct vicinity of the lake) and perform as good as pollen in tracing regional vegetation composition.
Resumo:
Sediment samples collected during the expedition "Arctic Ocean '96" with the Swedish ice-breaker ODEN were investigated to estimate for the first time heterotrophic activity and total microbial biomass (size range from bacteria to small metazoans) from the perennially ice-covered central Arctic Ocean. Benthic activities and biomass were evaluated analysing a series of biogenic sediment compounds (i.e. bacterial exoenzymes, total adenylates, DNA, phospholipids, particulate proteins). In contrast to the very time-consuming sorting, enumeration and weight determination, analyses of biochemical sediment parameters may represent a useful method for obtaining rapid information on the ecological situation in a given benthic system. Bacterial cell numbers and biomass were estimated for comparison with biochemically determined biomass data, to evaluate the contribution of the bacterial biomass to the total microbial biomass. It appeared that bacterial biomass made up only 8-31% (average of all stations = 20%) of the total microbial biomass, suggesting a large fraction of other small infaunal organisms within the sediment samples (most probably fungi, yeasts, protozoans such as flagellates, ciliates or amoebae, as well as a fraction of small metazoans). Activity and biomass values determined within this study were generally extremely low, and often even slightly lower than those given for other deep oceanic regions, thus characterizing the seafloor of the central Arctic Ocean as a "benthic desert". Nevertheless, some clear trends in the data could be found, e.g. generally sharply decreasing values within the sediment column, a vague tendency for declining values with increasing water depth of sampling stations, and also differences between various Arctic deep-sea regions.
Resumo:
Presented are physical and biological data for the region extending from the Barents Sea to the Kara Sea during 158 scientific cruises for the period 1913-1999. Maps with the temporal distribution of physical and biological variables of the Barents and Kara Seas are presented, with proposed quality control criteria for phytoplankton and zooplankton data. Changes in the plankton community structure between the 1930s, 1950s, and 1990s are discussed. Multiple tables of Arctic Seas phytoplankton and zooplankton species are presented, containing ecological and geographic characteristics for each species, and images of live cells for the dominant phytoplankton species.
Resumo:
New geochronometers are needed for sediments of the Arctic Ocean spanning at least the last half million years, largely because oxygen-isotope stratigraphy is relatively ineffective in this ocean, and because other dating techniques require significant assumptions about sedimentation rates. Multi-aliquot luminescence sediment-dating procedures were applied to polymineral, fine-silt samples from 9 core-top and 37 deeper samples from 20 cores representing 19 sites across the Arctic Ocean. Most samples have independent age assignments and other known properties (e.g., % coarse fraction, % carbonate, U-Th isotopes). Thick-source alpha-particle counting indicates that for most regions the contribution of measured unsupported 230Th and 231Pa to calculated dose rates is