927 resultados para aerosol chemistry
Resumo:
The experimental verification of matrix diffusion in crystalline rocks largely relies on indirect methods performed in the laboratory. Such methods are prone to perturbations of the rock samples by collection and preparation and therefore the laboratory-derived transport properties and fluid composition might not represent in situ conditions. We investigated the effects induced by the drilling process and natural rock stress release by mass balance considerations and sensitivity analysis of analytical out-diffusion data obtained from originally saturated, large-sized drillcore material from two locations drilled using traced drilling fluid. For in situ stress-released drillcores of quartz-monzodiorite composition from the Aspo HRL, Sweden, tracer mass balance considerations and 1D and 2D diffusion modelling consistently indicated a contamination of <1% of the original pore water. This chemically disturbed zone extends to a maximum of 0.1 mm into the drillcore (61.8 mm x 180.1 mm) corresponding to about 0.66% of the total pore volume (0.77 vol.%). In contrast, the combined effects of stress release and the drilling process, which have influenced granodioritic drillcore material from 560 m below surface at Forsmark. Sweden, resulted in a maximum contamination of the derived porewater Cl(-) concentration of about 8%. The mechanically disturbed zone with modified diffusion properties covers the outermost similar to 6 mm of the drillcore (50 mm x 189 mm), whereas the chemically disturbed zone extends to a maximum of 0.3 mm based on mass balance considerations, and to 0.15 mm to 0.2 mm into the drillcore based on fitting the observed tracer data. This corresponds to a maximum of 2.4% of the total pore volume (0.62 vol.%) being affected by the drilling-fluid contamination. The proportion of rock volume affected initially by drilling fluid or subsequently with experiment water during the laboratory diffusion and re-saturation experiments depends on the size of the drillcore material and will become larger the smaller the sample used for the experiment. The results are further in support of matrix diffusion taking place in the undisturbed matrix of crystalline rocks at least in the cm range.
Resumo:
The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated. To assess the development and function of primary human osteoblasts on metal surfaces, cell viability, differentiation, and gene expression were determined. Titanium surfaces were used as positive, and surfaces coated with gold were used as negative controls. Little differences in the cellular parameters tested for were found when the cells were grown on titanium discs sputter coated with titanium, zirconium, niobium, tantalum, gold, and chromium. Cell number, activity of cell layer-associated alkaline phosphatase (ALP), and levels of transcripts encoding COL1A1 and BGLAP did not vary significantly in dependence of the surface chemistry. Treatment of the cell cultures with 1,25(OH)2 D3 /Dex, however, significantly increased ALP activity and BGLAP messenger RNA levels. The data demonstrate that the metal layer coated onto the titanium discs exerted little modulatory effects on cell behavior. It is suggested that the microenvironment regulated by the peri-implant tissues is more effective in regulating the tissue response than is the material of the implant itself.
Resumo:
N,N'-((4-(Dimethylamino)phenyl)methylene)bis(2-phenylacetamide) was discovered by using 3D pharmacophore database searches and was biologically confirmed as a new class of CB(2) inverse agonists. Subsequently, 52 derivatives were designed and synthesized through lead chemistry optimization by modifying the rings A-C and the core structure in further SAR studies. Five compounds were developed and also confirmed as CB(2) inverse agonists with the highest CB(2) binding affinity (CB(2)K(i) of 22-85 nM, EC(50) of 4-28 nM) and best selectivity (CB(1)/CB(2) of 235- to 909-fold). Furthermore, osteoclastogenesis bioassay indicated that PAM compounds showed great inhibition of osteoclast formation. Especially, compound 26 showed 72% inhibition activity even at the low concentration of 0.1 μM. The cytotoxicity assay suggested that the inhibition of PAM compounds on osteoclastogenesis did not result from its cytotoxicity. Therefore, these PAM derivatives could be used as potential leads for the development of a new type of antiosteoporosis agent.
Resumo:
Background Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1) as well as the release of the (pro)-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose–response pattern. Additional differences can be found for the factor time: In the aerosol scenario, parameters tend to their maximum already after 4h of exposure, whereas under submerged conditions, effects appear most pronounced mainly after 24h. Aerosol exposure provides information about the synergistic interplay of gaseous and particulate phase of an aerosol in the context of inhalation toxicology. Exposure to suspensions represents a valuable complementary method and allows investigations on particle-associated toxicity by excluding all gas–derived effects.