1000 resultados para added-mass
Resumo:
Noni is a fruit that has interested the scientific community due to its medicinal and functional activities. Different products that contain noni are already in the market, but their consumption could be impaired by their distinctive unpleasant aroma and flavor. The aim of this work was to evaluate the noni pulp volatile profile by dynamic headspace and gas chromatography-mass spectrometry. Thirty seven volatile compounds were detected, mainly alcohols (63.3%), esters (26.9%), cetones (7.4%), and acids (1.2%).
Resumo:
(E)-2-nonenal is considered an important off-flavor of beer, related to the flavor of beer staling. In this study, a new method for determination of (E)-2-nonenal in beer using headspace solid-phase microextraction and gas chromatographic coupled mass spectrometry (HS-SPME-GC-MS) was developed and applied in Brazilian beer samples. The extractions were carried out in CAR-PDMS (carboxen-polydimethylsiloxane) fiber and the best results were found with 15 minutes of equilibrium and 90 minutes of extraction at 50 °C. The method was linear in the range from 0.02 to 4.0 μg.L-1 with correlation coefficient of 0.9994. The limits of detection and quantification were 0.01 and 0.02 μg.L-1, respectively. 96.5% of recovery and 4% precision (RSD) were obtained in the fortification of beer samples with 2.0 μg.L-1 of (E)-2-nonenal. The developed method proved to be simple, efficient and highly sensitive to the determination of this analyte being easily applied in the quality control of the brewery. (E)-2-nonenal was found in all beer samples analyzed with levels between 0.17 and 0.42 μg.L-1.
Resumo:
The characterization of wine samples by direct insertion electrospray ionization mass spectrometry (ESI-MS), without pre-treatment or chromatographic separation, in a process denominated fingerprinting, has been applied to several samples of wine produced with grapes of the Pinot noir, Merlot and Cabernet Sauvignon varieties from the state o Rio Grande do Sul, in Brazil. The ESI-MS fingerprints of the samples detected changes which occurred during the aging process in the three grape varieties. Principal Component Analysis (PCA) of the negative ion mode fingerprints was used to group the samples, pinpoint the main changes in their composition, and indicate marker ions for each group of samples.
Resumo:
A method using Liquid Chromatography Tanden Mass Spectrometry (LC-MS/MS) with matrix-matched calibration curve was developed and validated for determining ochratoxin A (OTA) in green coffee. Linearity was found between 3.0 and 23.0 ng.g-1. Mean recoveries ranged between 90.45% and 108.81%; the relative standard deviation under repeatability and intermediate precision conditions ranged from 5.39% to 9.94% and from 2.20% to 14.34%, respectively. The limits of detection and quantification were 1.2 ng.g-1 and 3.0 ng.g-¹, respectively. The method developed was suitable and contributed to the field of mycotoxin analysis, and it will be used for future production of the Certified Reference Material (CRM) for OTA in coffee.
Resumo:
Dulce de leche (DL), a dairy dessert highly appreciated in Brazil, is a concentrated product containing about 70% m/m of total solids. Thermophysical and rheological properties of two industrial Brazilian Dulce de leche formulations (classic Dulce de leche and Dulce de leche added with coconut flakes 1.5% m/m) were determined at temperatures comprised between 28.4 and 76.4 °C. In general, no significant differences (p < 0.05) were observed in the presence of coconut flakes in the two formulations. Heat capacity varied from 2633.2 to 3101.8 J/kg.°C; thermal conductivity from 0.383 to 0.452 W/m.°C; specific mass from 1350.7 to 1310.7 kg/m³; and, thermal diffusivity from (1.082 × 10-7 to 1.130 × 10-7) m²/s. The Bingham model was used to properly describe the non-Newtonian behavior of both formulations, with yielding stress values varying from 27.3 to 17.6 Pa and plastic viscosity from 19.9 to 5.9 Pa.s.
Resumo:
The objective of this study was to evaluate the effect of the addition of oatmeal and palm fat in the elaboration of biscuits with added L-leucine and calcium in order to develop a product for sarcopenia in the elderly. The biscuits, or cookies, were elaborated applying a central composite rotational design with surface response methodology, and the significant linear, quadratic and interaction terms were used in the second order mathematical model. Physical, physicochemical and sensory analyses were performed by a trained panel. Based on the best results obtained, three cookie formulations were selected for sensory evaluation by the target group and physicochemical determinations. The formulations with the highest sensory scores for appearance and texture and medium scores for color and expansion index were selected. The addition of calcium and leucine increased significantly the concentration of these components in the biscuits elaborated resulting in a cookie with more than 30% of DRI (Dietary Reference Intake) for calcium and leucine. The formulations selected showed high acceptance by the target group; therefore, they can be included in the diet of elderly with sarcopenia as a functional food.
Resumo:
The aim of this study was to extract and identify volatile compounds from pineapple residues generated during concentrated juice processing. Distillates of pineapple residues were obtained using the following techniques: simple hydrodistillation and hydrodistillation by passing nitrogen gas. The volatile compounds present in the distillates were captured by the solid-phase microextraction technique. The volatile compounds were identified in a system of high resolution gas chromatography system coupled with mass spectrometry using a polyethylene glycol polar capillary column as stationary phase. The pineapple residues constituted mostly of esters (35%), followed by ketones (26%), alcohols (18%), aldehydes (9%), acids (3%) and other compounds (9%). Odor-active volatile compounds were mainly identified in the distillate obtained using hydrodistillation by passing nitrogen gas, namely decanal, ethyl octanoate, acetic acid, 1-hexanol, and ketones such as γ-hexalactone, γ-octalactone, δ-octalactone, γ-decalactone, and γ-dodecalactone. This suggests that the use of an inert gas and lower temperatures helped maintain higher amounts of flavor compounds. These data indicate that pineapple processing residue contained important volatile compounds which can be extracted and used as aroma enhancing products and have high potential for the production of value-added natural essences.
Resumo:
In order to determine the variability of pequi tree (Caryocar brasiliense Camb.) populations, volatile compounds from fruits of eighteen trees representing five populations were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. Seventy-seven compounds were identified, including esters, hydrocarbons, terpenoids, ketones, lactones, and alcohols. Several compounds had not been previously reported in the pequi fruit. The amount of total volatile compounds and the individual compound contents varied between plants. The volatile profile enabled the differentiation of all of the eighteen plants, indicating that there is a characteristic profile in terms of their origin. The use of Principal Component Analysis and Cluster Analysis enabled the establishment of markers (dendrolasin, ethyl octanoate, ethyl 2-octenoate and β-cis-ocimene) that discriminated among the pequi trees. According to the Cluster Analysis, the plants were classified into three main clusters, and four other plants showed a tendency to isolation. The results from multivariate analysis did not always group plants from the same population together, indicating that there is greater variability within the populations than between pequi tree populations.
Resumo:
The effect of protein lupine isolate (LI) and addition of brea gum (BG) on a basic bread formulation is described. The major objective of this research was to evaluate the influence of the addition of LI on the quality and quantity of the proteins of fresh bread with BG. Protein quality was determinate by the Chemical Score method corrected for protein digestibility (CSCD%). The bread dough characteristics were determined by farinograph and alveograph. Fresh bread characterization was performed by measuring the physical parameters and evaluating the crumb structure. The effect of LI and BG on available lysine, the loss of available lysine ratio, and the chemical composition of the breads were also determined. The addition of LI on the bread formulation improved the protein content and the CSCD% of lysine. The dough with LI was less resistant to prolonged kneading and less manageable. With BG addition, the dough became stickier. The quality of fresh bread was affected by the addition of LI: the fresh bread had lower specific volume and more heterogeneous crumbs than that of the control group. The addition of BG did not influence the quality of the bread made with the mixed flour, but it had a positive effect on the loss of available lysine.
Resumo:
β-glucan is currently one of the most important bioactive substances. Hence, there is a growing interest in the production of various foods containing β-glucan. The study examines the influence of the degree of wheat flour extraction in the quality of breads with high β-glucan content. Rheological tests were conducted on dough. Volume, mass, color and texture of bread were measured after baking. We observed that increasing the degree of extraction caused an increase in the storage and loss modulus. All of the bread made from the different flours were smaller in volume after the addition of β-glucan, although the yield increased. The crumb color of β-glucan-added breads was darker than the control samples. Control samples were higher in textural parameters (firmness, gumminess and chewiness). β-glucan-added samples had decreased porosity. The results revealed that using very strong flour with a high protein content results in a high quality β-glucan bread with a higher nutritional value due to the high total dietary fiber and β-glucan content.
Resumo:
AbstractThis study aimed to evaluate the effect of the distillation time and the sample mass on the total SO2 content in integral passion fruit juice (Passiflora sp). For the SO2 analysis, a modified version of the Monier-Williams method was used. In this experiment, the distillation time and the sample mass were reduced to half of the values proposed in the original method. The analyses were performed in triplicate for each distilling time x sample mass binomial, making a total of 12 tests, which were performed on the same day. The significance of the effects of the different distillation times and sample mass were evaluated by applying one-factor analysis of variance (ANOVA). For a 95% confidence limit, it was found that the proposed amendments to the distillation time, sample mass, and the interaction between distilling time x sample mass were not significant (p > 0.05) in determining the SO2 content in passion fruit juice. In view of the results that were obtained it was concluded that for integral passion fruit juice it was possible to reduce the distillation time and the sample mass in determining the SO2 content by the Monier-Williams method without affecting the result.
Resumo:
Abstract The aim of this study was to obtain hydroethanolic extract of propolis by extraction, assisted by focused microwave, and to apply it in Tuscan-style sausage. The extract was used at concentrations of 0.5%, 1.0% and 2.0% (w/v) in the manufacture of the sausage, which was then analyzed in cold storage at 4 °C for 56 days. The following analyses were performed: mesophilic and psychotrophic organisms; coliforms at 35 and 45 °C; positive and negative-coagulase Staphylococcus, sulfite-reducing Clostridium, and Salmonella spp. The results were below the limits established by the Brazilian legislation, with some changes at the end of the study. Consequently, propolis extract prolonged the shelf life of the Tuscan-style sausage for 56 days and it is therefore an ingredient that can be potentially used in the preparation of this product.
Resumo:
The European Council has invited the European Commission to present the first macro-regional strategy – the EU Strategy for the Baltic Sea Region (EUSBSR) on the 14th of December 2007, primarily to address collective challenges and opportunities of the Region and also to engender cohesion in support of an European integration policy. However, macro-regional strategies conceived to aid European integration and territorial cohesion were viewed by academics with skepticism, obscuring the strategies’ potential impact. This thesis intends to investigate and measure the added value of the EUSBSR in order to analyze its impact on regional development and its feasibility as a guide for future programs intending to strengthen European cohesion and integration. To determine the added value of the EUSBSR the thesis is organized into three sections, so as to address environmental, social, and economic concerns, respectively. The first case examines EU-Russia cooperation in an environmental context to investigate how environmental cooperation with an external neighbor could forge increased cohesion in a macro-regional setting. To figure the added cooperation that academic cooperation among universities would contribute to social dimension, the work has chosen several study results. Lastly, to measure out the added value for the economic strategy objective, the study employs the project for Improved Global Competitiveness in an example of ‘A Baltic Sea Region Program for Innovation, Cluster and SME-Networks’ as an economic plan.
Resumo:
The production of biodiesel through transesterification has created a surplus of glycerol on the international market. In few years, glycerol has become an inexpensive and abundant raw material, subject to numerous plausible valorisation strategies. Glycerol hydrochlorination stands out as an economically attractive alternative to the production of biobased epichlorohydrin, an important raw material for the manufacturing of epoxy resins and plasticizers. Glycerol hydrochlorination using gaseous hydrogen chloride (HCl) was studied from a reaction engineering viewpoint. Firstly, a more general and rigorous kinetic model was derived based on a consistent reaction mechanism proposed in the literature. The model was validated with experimental data reported in the literature as well as with new data of our own. Semi-batch experiments were conducted in which the influence of the stirring speed, HCl partial pressure, catalyst concentration and temperature were thoroughly analysed and discussed. Acetic acid was used as a homogeneous catalyst for the experiments. For the first time, it was demonstrated that the liquid-phase volume undergoes a significant increase due to the accumulation of HCl in the liquid phase. Novel and relevant features concerning hydrochlorination kinetics, HCl solubility and mass transfer were investigated. An extended reaction mechanism was proposed and a new kinetic model was derived. The model was tested with the experimental data by means of regression analysis, in which kinetic and mass transfer parameters were successfully estimated. A dimensionless number, called Catalyst Modulus, was proposed as a tool for corroborating the kinetic model. Reactive flash distillation experiments were conducted to check the commonly accepted hypothesis that removal of water should enhance the glycerol hydrochlorination kinetics. The performance of the reactive flash distillation experiments were compared to the semi-batch data previously obtained. An unforeseen effect was observed once the water was let to be stripped out from the liquid phase, exposing a strong correlation between the HCl liquid uptake and the presence of water in the system. Water has revealed to play an important role also in the HCl dissociation: as water was removed, the dissociation of HCl was diminished, which had a retarding effect on the reaction kinetics. In order to obtain a further insight on the influence of water on the hydrochlorination reaction, extra semi-batch experiments were conducted in which initial amounts of water and the desired product were added. This study revealed the possibility to use the desired product as an ideal “solvent” for the glycerol hydrochlorination process. A co-current bubble column was used to investigate the glycerol hydrochlorination process under continuous operation. The influence of liquid flow rate, gas flow rate, temperature and catalyst concentration on the glycerol conversion and product distribution was studied. The fluid dynamics of the system showed a remarkable behaviour, which was carefully investigated and described. Highspeed camera images and residence time distribution experiments were conducted to collect relevant information about the flow conditions inside the tube. A model based on the axial dispersion concept was proposed and confronted with the experimental data. The kinetic and solubility parameters estimated from the semi-batch experiments were successfully used in the description of mass transfer and fluid dynamics of the bubble column reactor. In light of the results brought by the present work, the glycerol hydrochlorination reaction mechanism has been finally clarified. It has been demonstrated that the reactive distillation technology may cause drawbacks to the glycerol hydrochlorination reaction rate under certain conditions. Furthermore, continuous reactor technology showed a high selectivity towards monochlorohydrins, whilst semibatch technology was demonstrated to be more efficient towards the production of dichlorohydrins. Based on the novel and revealing discoveries brought by the present work, many insightful suggestions are made towards the improvement of the production of αγ-dichlorohydrin on an industrial scale.