906 resultados para Zinc smelting
The mineralogy and microstructure of sedimentary zinc sulfides formed by bacterial sulfate reduction
Resumo:
Loss of adipose tissue in cancer cachexia in mice bearing the MAC16 tumour arises from an increased lipid mobilisation through increased expression of zinc-α2-glycoprotein (ZAG) in white (WAT) and brown (BAT) adipose tissue. Glucocorticoids have been suggested to increase ZAG expression, and this study examines their role in cachexia and the mechanisms involved. In mice bearing the MAC16 tumour, serum cortisol concentrations increased in parallel with weight loss, and the glucocorticoid receptor antagonist RU38486 (25 mg kg-1) attenuated both the loss of body weight and ZAG expression in WAT. Dexamethasone (66 μg kg-1) administration to normal mice produced a six-fold increase in ZAG expression in both WAT and BAT, which was also attenuated by RU38486. In vitro studies using 3T3-L1 adipocytes showed dexamethasone (1.68 μM) to stimulate lipolysis and increase ZAG expression, and both were attenuated by RU38486 (10 μM), anti-ZAG antibody (1 μ gml-1), and the β3-adrenoreceptor (β3-AR) antagonist SR59230A (10 μM). Zinc-α2-glycoprotein also increased its own expression and this was attenuated by SR59230A, suggesting that it was mediated through the β3-AR. This suggests that glucocorticoids stimulate lipolysis through an increase in ZAG expression, and that they are responsible for the increase in ZAG expression seen in adipose tissue of cachectic mice. © 2005 Cancer Research UK.
Resumo:
The mechanism by which the adipokine zinc-a2-glycoprotein (ZAG) increases the mass of gastrocnemius, but not soleus muscle of diabetic mice, has been evaluated both in vivo and in vitro. There was an increased phosphorylation of both double-stranded RNA-dependent protein kinase and its substrate, eukaryotic initiation factor-2a, which was attenuated by about two-thirds in gastrocnemius but not soleus muscle of ob/ob mice treated with ZAG (50 µg, iv daily) for 5 d. ZAG also reduced the expression of the phospho forms of p38MAPK and phospholipase A2, as well as expression of the ubiquitin ligases (E3) muscle atrophy F-box/atrogin-1 and muscle RING finger protein, and the increased activity of both caspase-3 and casapse-8 to values found in nonobese controls. ZAG also increased the levels of phospho serine-threonine kinase and mammalian target of rapamycin in gastrocnemius muscle and reduced the phosphorylation of insulin receptor substrate-1 (Ser307) associated with insulin resistance. Similar changes were seen with ZAG when murine myotubes were incubated with high glucose concentrations (10 and 25 mm), showing that the effect of ZAG was direct. ZAG produced an increase in cAMP in murine myotubes, and the effects of ZAG on protein synthesis and degradation in vitro could be replicated by dibutyryl cAMP. ZAG increased cAMP levels of gastrocnemius but not soleus muscle. These results suggest that protein accretion in skeletal muscle in response to ZAG may be due to changes in intracellular cAMP and also that ZAG may have a therapeutic application in the treatment of muscle wasting conditions.