914 resultados para Wnt SIGNALING
Resumo:
Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.
Resumo:
STIM1 and ORAI1 constitute the core machinery of the ubiquitous store-operated calcium entry pathway and loss of function in these proteins is associated with severe immune and muscular disorders. Other isoforms-STIM1L, STIM2, ORAI2 and ORAI3 exhibit varied expression levels in different cell types along with several other interaction partners and thereby play different roles to facilitate, regulate and fine-tune the calcium entry. STIM proteins convey the Ca(2+) store-depletion message to the PM and thereby participate in refilling of the ER by physically interacting with the Ca(2+)-selective ORAI channels at the PM. STIM and ORAI are exposed to oxidative modifications in the ER, the cytosol, and at the cell surface, and redox-mediated alterations in STIM/ORAI coupling might contribute to autoimmune disorders and cancer progression. This review discusses the redox reactivity of cysteine residues in STIM and ORAI isoforms, focusing on the oxidative modifications of STIM and ORAI proteins by which STIM-ORAI signaling can be modulated.
Resumo:
Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.
Resumo:
Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth.
Resumo:
Genetically encoded, ratiometric biosensors based on fluorescence resonance energy transfer (FRET) are powerful tools to study the spatiotemporal dynamics of cell signaling. However, many biosensors lack sensitivity. We present a biosensor library that contains circularly permutated mutants for both the donor and acceptor fluorophores, which alter the orientation of the dipoles and thus better accommodate structural constraints imposed by different signaling molecules while maintaining FRET efficiency. Our strategy improved the brightness and dynamic range of preexisting RhoA and extracellular signal-regulated protein kinase (ERK) biosensors. Using the improved RhoA biosensor, we found micrometer-sized zones of RhoA activity at the tip of F-actin bundles in growth cone filopodia during neurite extension, whereas RhoA was globally activated throughout collapsing growth cones. RhoA was also activated in filopodia and protruding membranes at the leading edge of motile fibroblasts. Using the improved ERK biosensor, we simultaneously measured ERK activation dynamics in multiple cells using low-magnification microscopy and performed in vivo FRET imaging in zebrafish. Thus, we provide a construction toolkit consisting of a vector set, which enables facile generation of sensitive biosensors.
Resumo:
Rho-family GTPases are molecular switches that transmit extracellular cues to intracellular signaling pathways. Their regulation is likely to be highly regulated in space and in time, but most of what is known about Rho-family GTPase signaling has been derived from techniques that do not resolve these dimensions. New imaging technologies now allow the visualization of Rho GTPase signaling with high spatio-temporal resolution. This has led to insights that significantly extend classic models and call for a novel conceptual framework. These approaches clearly show three things. First, Rho GTPase signaling dynamics occur on micrometer length scales and subminute timescales. Second, multiple subcellular pools of one given Rho GTPase can operate simultaneously in time and space to regulate a wide variety of morphogenetic events (e.g. leading-edge membrane protrusion, tail retraction, membrane ruffling). These different Rho GTPase subcellular pools might be described as 'spatio-temporal signaling modules' and might involve the specific interaction of one GTPase with different guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and effectors. Third, complex spatio-temporal signaling programs that involve precise crosstalk between multiple Rho GTPase signaling modules regulate specific morphogenetic events. The next challenge is to decipher the molecular circuitry underlying this complex spatio-temporal modularity to produce integrated models of Rho GTPase signaling.
Resumo:
In transgenic Arabidopsis a patatin class I promoter from potato is regulated by sugars and proline (Pro), thus integrating signals derived from carbon and nitrogen metabolism. In both cases a signaling cascade involving protein phosphatases is involved in induction. Other endogenous genes are also regulated by both Pro and carbohydrates. Chalcone synthase (CHS) gene expression is induced by both, whereas the Pro biosynthetic Δ1-pyrroline-5-carboxylate synthetase (P5CS) is induced by high Suc concentrations but repressed by Pro, and Pro dehydrogenase (ProDH) is inversely regulated. The mutantrsr1-1, impaired in sugar dependent induction of the patatin promoter, is hypersensitive to low levels of external Pro and develops autofluorescence and necroses. Toxicity of Pro can be ameliorated by salt stress and exogenously supplied metabolizable carbohydrates. The rsr1-1 mutant shows a reduced response regarding sugar induction of CHS andP5CS expression. ProDH expression is de-repressed in the mutant but still down-regulated by sugar. Pro toxicity seems to be mediated by the degradation intermediate Δ1-pyrroline-5-carboxylate. Induction of the patatin promoter by carbohydrates and Pro, together with the Pro hypersensitivity of the mutant rsr1-1, demonstrate a new link between carbon/nitrogen and stress responses.
Resumo:
Phosphatidylinositol 3-kinase (PI3K) generates membrane phospholipids that serve as second messengers to recruit signaling proteins to plasma membrane consequently regulating cell growth and survival. PI3K is a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit. Association of the p85 with other signal proteins is critical for induced PI3K activation. Activated PI3K, in turn, leads to signal flows through a variety of PI3K effectors including PDK1, AKT, GSK3, BAD, p70 S6K and NFκB. The PI3K pathway is under regulation by multiple signal proteins representing cross-talk between different signaling cascades. In this study, we have evaluated the role of protein kinase C family kinases on signaling through PI3K at multiple levels. Firstly, we observed that the action of PKC specific inhibitors like Ro-31-8220 and GF109203X was associated with an increased AKT phosphorylation and activity, suggesting that PKC kinases might play a negative role in the regulation of PI3K pathway. Then, we demonstrated the stimulation of AKT by PKC inhibition was dependent on functional PI3K enzyme and able to be transmitted to the AKT effector p70 S6K. Furthermore, we showed an inducible physical association between the PKCζ isotype and AKT, which was accompanied by an attenuated AKT activity. However, a kinase-dead form of PKC failed to affect AKT. In the second part of our research we revealed the ability of a different PKC family member, PKCδ to bind to the p85 subunit of PI3K in response to oxidative stress, a process requiring the activity of src tyrosine kinases. The interaction was demonstrated to be a direct and specific contact between the carboxyl terminal SH2 domain of p85 and tyrosine phosphorylated PKCδ. Several different types of agonists were capable to induce this association including tyrosine kinases and phorbol esters with PKCδ tyrosine phosphorylation being integral components. Finally, the PKCδ-PI3K complex was related to a reduction in the AKT phosphorylation induced by src. A kinase-deficient mutant of PKCδ was equally able to inhibit AKT signal as the wild type, indicative of a process independent of PKCδ catalytic activity. Altogether, our data illustrate different PKC isoforms regulating PI3K pathway at multiple levels, suggesting a mechanism to control signal flows through PI3K for normal cell activities. Although further investigation is required for full understanding of the regulatory mechanism, we propose that complex formation of signal proteins in PI3K pathway and specific PKC isoforms plays important role in their functional linkage. ^
Resumo:
During development, embryos must carefully integrate the processes of cell proliferation and differentiation. TH has been identified in Xenopus laevis as a gene product that functions in regulating differentiation of the neural ectoderm through its effect on cell proliferation. However, the mechanism and molecular pathway through which TH functions are not known. We identified the Xenopus FK506 binding protein homolog (XFKBP12) as a protein that interacted with TH in a yeast two-hybrid screen with TH as the bait. The direct and specific interaction between TH and XFKBP12 was supported by several tests including CO-IP, drug competence assay and mutagenesis analysis. To investigate the function of XFKBP12 during embryogenesis, we created an XFKBP12 loss of function embryo using antisense morpholino oligonucleotides (MO). XFKBP12 MO injected embryos displayed similar phenotypes as TH depleted embryos. We also demonstrated that both TH and XFKBP12 functioned through the TOR signaling pathway which is a target for cancer therapies. The interaction between TH and XFKBP 12 was required to regulate the proliferation of neural cells. Therefore, our study indicates that TH represents the endogenous ligand of XFKBP12 and together they coordinate neural cell proliferation and differentiation through the conserved rapamycin sensitive TOR pathway. Thus, understanding how this pathway functions in development will not only provide us important insights into the relationship between proliferation and differentiation, but help design rational cancer therapies targeting this pathway. ^
Resumo:
During early mouse neural development, bone morphogenetic protein (BMP) signaling patterns the dorsal neural tube and defines distinct neural progenitor cell domains along the dorsoventral axis. Unlike the ventral signaling molecule Sonic hedgehog, which has long-range activity by establishing a concentration gradient in the ventral neural tube, these dorsally expressed BMPs appear to have a limited domain of action. This raises questions as to how BMP activity is restricted locally and how restricted BMP signaling directs dorsal neural patterning and differentiation. I hypothesize that BMPs are restricted in the dorsal neural tube for correct dorsoventral patterning. ^ Previous studies have shown that the positively charged basic amino acids located at the N-terminus of several BMPs are essential for heparin binding and diffusion. This provides a novel tool to address these questions. Here I adapted a UAS/GAL4 bigenic mouse system to control the ectopic expression of BMP4 and a mutant form of BMP4 that lacks a subset of the N-terminal basic amino acids. The target genes, UAS-Bmp4 and UAS-mBmp4 , were introduced into the Hprt locus by gene targeting in mouse embryonic stem cells. The expression of the GAL4 transactivator was driven by a roof plate specific Wnt1 promoter. ^ The bigenic mouse embryos exhibit phenotype variations, ranging from mid/hindbrain defects, hemorrhage, and eye abnormalities to vasculture formation. Embryonic death starts around E11.5 because of severe hemorrhage. The different expression levels of the activated transgene may account for the phenotype variation. Further marker analysis reveals that mutant BMP4 induces ectopic expression of the dorsal markers MSX1/2 and PAX7 in the ventral neural tube. In addition, the expression of the ventral neural marker NKX2.2 is affected by the expanded BMP4 activity, indicating that ectopic BMP signaling can antagonize ventral signaling. Comparison of the phenotypes of the Wnt1/ Bmp4 and Wnt1/mBmp4 bigenic embryos that express transgenes at the same level, respectively, shows that mutant BMP4 causes the expansion of dorsal neural fates ventrally while wild type BMP4 does not, suggesting that mutant BMP4 acts farther than wild type BMP4. Together, these data suggest that the N-terminus basic amino acid core controls BMP4 long-range activity in neural development, and that BMP signaling patterns the dorsal neural tube through a secondary signaling pathway that involves homeodomain transcription factors MSX1/2 and PAX7. ^
Resumo:
The formation of the vertebrate face is an extremely complex developmental process, which needs to coordinate the outgrowth of several facial primordia. Facial primordia are small buds made up of mesenchymal masses enclosed by an epithelial layer that surrounds the primitive mouth. The upper jaw is formed by the maxillary process, the lateral nasal process, and the frontonasal process while the mandibular process forms the lower jaw. Recent experiments using genetics in mice and bead implantation approaches have shown that the pitx2 homeobox gene and Bmp signaling play important roles in this complex developmental process. However, the molecular mechanisms underlying the function of pitx2 and Bmp in these events are still unclear. Here, we show that pitx2 is required for oral epithelium maintenance, and branchial arch signaling is pitx2 dosage sensitive by using pitx2 allelic combinations that encode varying levels of pitx2. Maintenance of fgf8 signaling requires only low pitx2 dosage while repression of Bmp signaling requires high pitx2 levels. Different incisor and molar phenotypes in low level pitx2 mutant embryos suggest a distinct requirement for pitx2 in tooth-type development. The results show that pitx2 is required for craniofacial muscle formation and expanded Bmp signaling results in excess bone formation in pitx2 mutant embryos. Fate-mapping studies show that ectopic bone results from excessive bone growth, instead of muscle transformation. Moreover, by using cre/loxp system we show that partial loss of Bmpr-IA in the facial primordia results in cleft lip/palate, abnormal teeth, ectopic teeth and tooth transformation. These phenotypes suggest that Bmp signaling has multiple functions during craniofacial development. The mutant palate shelves can fuse with each other when cultured in vitro, suggesting that cleft palate is secondary to the partial loss of Bmpr-IA. Furthermore, we prove that Bmp4, one of the ligands of Bmpr-IA, plays a role during lip fusion developmental process and partial loss of Bmp4 in the facial primordia results in the lip fusion delay. These results have provided insight to understand the complex signaling cascades that regulate craniofacial development. ^
Resumo:
The heparan sulfate (HS)-fibroblast growth factor (FGF) signaling system is a ubiquitous regulator that senses local environmental changes and mediates cell-to-cell communication. This system consists of three mutually interactive components. These are regulatory polypeptides (FGF), FGF receptor (FGFR) and heparan sulfate proteoglycans (FGFRHS). All four FGFR genes are expressed in the adult liver. Expression of the FGFR1–3 genes is generally associated with non-parenchymal cells while expression of the FGFR4 gene is associated with parenchymal hepatocytes. We showed that livers of mice lacking FGFR4 exhibited normal morphology and regenerated normally in response to partial hepatectomy. However, the FGFR4 (−/−) mice exhibited depleted gallbladders, an elevated bile acid pool and elevated excretion of bile acids. Cholesterol- and bile acid-controlled liver cholesterol 7α-hydroxylase (Cyp7a), the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dietary cholesterol, but repressed normally by dietary cholate. These results indicated that FGFR4 was not directly involved in liver growth but exerted negative control on liver bile acid synthesis. This was confirmed in transgenic mice overexpressing the constitutively active human FGFR4 in livers. The transgenic mice exhibited decreased fecal bile acid excretion, bile acid pool size, and expression of Cyp7a. Introduction of this constitutively active human FGFR4 into FGFR4 (−/−) mice restored the inhibition of bile acid synthesis. Activation of the c-Jun N-terminal Kinase (JNK) pathway by FGFR4 correlated with the repressive effect on bile acid synthesis. ^ To determine whether FGFR4 played a broader role in liver-specific metabolic function, we examined the impact of both acute and chronic exposure to CCl 4 in FGFR4 (−/−) mice. Following acute CCl4 exposure, the FGFR4 (−/−) mice exhibited accelerated liver injury, a significant increase in liver mass and delayed hepatolobular repair, with no apparent effect on liver cell proliferation and restoration of cellularity. Chronic CCl4 exposure resulted in severe fibrosis in livers of FGFR4 (−/−) mice compared to normal mice. Analysis at both mRNA and protein levels indicated an 8 hr delay in FGFR4-deficient mice in the down-regulation of cytochrome P450 2E1 (CYP2E1) protein, the major enzyme whose products underlie CCl 4-induced injury. These results show that hepatocyte FGFR4 protects against acute and chronic insult to the liver and prevents accompanying fibrosis. ^ Of the 23 FGF polypeptides, FGF1 and FGF2 are present at significant levels in the liver. To determine whether FGF1 and FGF2 played a role in CCl 4-induced liver injury and fibrosis, we examined the impact of both acute and chronic exposure to CCl4 in both wild-type and FGF1-FGF2 double-knockout mice. Following acute CCl4 exposure, FGF1(−/−)FGF2(−/−) mice exhibited accelerated liver injury, overall normal liver growth and repair, and decreased liver collagen α1(I) induction. Liver fibrosis resulting from chronic CCl4 exposure was markedly decreased in livers of FGF1(−/−)FGF2(−/−) mice compared to wild-type mice. This study suggests a role for FGF1 and FGF2 in hepatic fibrogenesis. ^ In summary, our three part study shows that specific components of the ubiquitous HS-FGF signaling family in the liver context interfaces with metabolite- and xenobiotic-controlled networks to regulate liver function, but has no apparent direct effect on liver cell growth. ^
Resumo:
Non-melanoma skin cancer is the most frequently diagnosed malignancy in the United States of which basal cell carcinoma (BCC) accounts for 65%. It has recently been determined that deregulation of the sonic hedgehog (shh) pathway leads to the development of BCC. Shh, gli-1, gli-2 gli-3, ptc and smo are overexpressed in BCC and overexpression of these genes in the epidermis results in formation of BCC-like tumors. Despite these observations, the mechanisms by which the pathway controls epidermal homeostasis and the development of the malignant phentotype are unknown. This study assessed the role of the shh pathway in epidermal homeostasis through regulation of apoptosis and differentiation. ^ The anti-apoptotic protein, bcl-2 is overexpressed in BCC, however transcriptional regulators of bcl-2 in the epidermis are unknown. Transient transfection of primary keratinocytes with gli-1 resulted in an increase of bcl-2 expression. Database analysis revealed seven candidate gli binding sites on the bcl-2 promoter. Cotransfection of increasing amounts of gli-1 in keratinoycytes resulted in a corresponding dose-dependent increase in bcl-2 promoter luciferase activity. An N-terminal mutant of gli-3 inhibited gli-1 transactivation of the bcl-2 promoter. The region −428 to −420 was found to be important for gli-1 regulation through gel shift, luciferase assays and site-directed mutagenesis. ^ In order to assess the ability of the shh pathway to regulate keratinocyte differentiation, HaCaT keratinocytes overexpressing sonic hedgehog, were grown in organotypic raft culture. Overexpression of shh induced a basal cell phenotype compared to vector control, as evidenced by transmural staining of cytokeratin 14 and altered Ki67 staining. Shh also induced keratinocyte invasion into the underlying collagen. This was associated with increased phosphorylation of EGFR, jnk and raf and increased expression of c-jun, mmp-9 and Ki67. Interestingly, shh overexpression in HaCaTs did not induce the typical downstream effects of shh signaling, suggesting a gli-independent mechanism. Sonic hedgehog's ability to induce an invasive phenotype was found to be dependent on activation of the EGF pathway as inhibition of EGFR activity with AG1478 and c-225 was able to reduce the invasiveness of HaCaT shh keratinocytes, whereas treatment with EGF augmented the invasiveness of the HaCaT shh clones. ^ These studies reveal the importance of the sonic hedgehog pathway in epidermal homeostasis by regulation of apoptosis through bcl-2, and control of keratinocyte differentiation and invasion through activation of the EGF pathway. They further suggest potential mechanisms by which deregulation of the shh pathway may lead to the development of the malignant phenotype. ^
Resumo:
Metastasis, the major cause of morbidity and mortality in most cancers, is a highly organized and organ-selective process. The receptor tyrosine kinase HER2 enhances tumor metastasis, however, its role in homing to metastatic organs is poorly understood. The chemokine receptor CXCR4 has recently been shown to mediate the malignant cancer cells to specific organs. Here we show that HER2 enhances the expression of CXCR4 by increasing CXCR4 protein synthesis and inhibiting its degradation. We also observed significant correlation between HER2 and CXCR4 expression in human breast tumor tissues, and an association between CXCR4 expression and a poor overall survival rate in patients with breast cancer. Furthermore, we found that CXCR4 is required for HER2-induced invasion, migration, and adhesion activities in vitro . Finally we established stable transfectants using retroviral RNA interference to inhibit CXCR4 expression and showed that the CXCR4 is required for HER2-mediated lung metastasis in vivo. These results provide a plausible mechanism for HER2-mediated breast tumor metastasis and homing to metastatic organs, and establish a functional link between the receptor tyrosine kinase HER2 and the chemokine receptor CXCR4 signaling pathways. ^ The HER2 overexpression activates PI-3K/Akt pathways and plays an important role in mediating cell survival and tumor development. Hypoxia inducible factors (HIF) are the key regulator for angiogenesis and energy metabolism, and thereby enhance tumor growth and metastasis. HIF activation occurs in the majority of human cancers, including the HER2 overexpressing cancer cells. Previous reports suggested that increased PI-3K/Akt may activate HIF pathway in various tumors, but the detail mechanism is still not completely understood. Here we found that HER2/PI-3K/Akt pathway induces HIF-1α activation, which is independent of hypoxia, but relatively weaker than hypoxic stimulation. This phenomenon was further observed in Akt knock out mouse embryonic fibroblast cells. The PI-3K/Akt pathway does not affect HIF-1α binding with its E3 ligase VHL, but enhances the binding affinity between HIF-1α and β unit. Furthermore, we found Akt phosphorylates HIF-1β at serine 271 and further regulated HIF transcriptional activity. Our findings provided one mechanism that HER2 induce HIF activation via Akt to promote angiogenesis, and this process is independent on hypoxia, which may have implications in the oncogenic activity of HER2 and PI-3K/Akt pathway. ^
Resumo:
RC3, also known as neurogranin, is a small neuronal IQ domain protein whose only known function is to bind calmodulin (CaM). The hypothesis tested in this work was that RC3 alters the dynamics of the interaction of Ca 2+-CaM with CaM-kinase II, so that there is less CaM-kinase II activation for a given Ca2+ stimulus. To evaluate this hypothesis, we investigated the affinity and kinetics of the interactions of CaM with Ca 2+, RC3 and CaM-kinase II. We quantitated the interaction of the four CaM-kinase II isoforms with CaM and found that the KD for binding of CaM to CaM-kinase II ranged from 7 nM to 60 nM. Using stopped-flow fluorimetry, we determined the kinetics of the interaction of Ca2+-CaM with αCaM-kinase II, and found that the association rate constant is 2.1 × 10 M −1s−1 and the dissociation rate constant is 1.6 s−1. We investigated the effects of RC3 and αCaM-kinase II on the affinity of CaM for Ca2+ and found that both proteins alter the rate of dissociation of Ca2+ from CaM. RC3 increases the rate of dissociation of Ca2+ from the C-terminal binding sites of CaM from 9 s−1 to ∼500 s−1 , while αCaM-kinase II causes a decrease in the rate of dissociation from all four Ca2+ binding sites. Measurement of the rate of dissociation of Ca2+ from CaM in the presence of both RC3 and αCaM-kinase II revealed a role for RC3 in accelerating the dissociation of the Ca 2+-CaM-αCaM-kinase II complex at the end of a Ca2+ signal. We characterized the interaction of RC3 with apo-CaM and Ca 2+-CaM and found that the KD for both of these interactions is about 1 μM. We also directly tested whether RC3 slowed the dynamics of the binding of CaM to αCaM-kinase II and found that RC3 had no effect for large changes in Ca2+, and a modest effect for small changes in Ca2+ levels. Our overall conclusion is that the ability of RC3 to alter the interaction of Ca2+ with CaM allows RC3 to alter the dynamics of interaction of CaM with Ca2+-dependent targets such as CaM-kinase II. ^