901 resultados para WEB systems
Resumo:
The fate of N-15-nitrogen-enriched formulated feed fed to shrimp was traced through the food web in shallow, outdoor tank systems (1000 1) stocked with shrimp. Triplicate tanks containing shrimp water with and without sediment were used to identify the role of the natural biota in the water column and sediment in processing dietary nitrogen (N). A preliminary experiment demonstrated that N-15-nitrogen-enriched feed products could be detected in the food web. Based on this, a 15-day experiment was conducted. The ammonium (NH4+) pool in the water column became rapidly enriched (within one day) with N-15-nitrogen after shrimp were fed N-15-enriched feed. By day 15, 6% of the added N-15-nitrogen was in this fraction in the 'sediment' tanks compared with 0.4% in the 'no sediment' tanks. The particulate fraction in the water column, principally autotrophic nanoflagellates, accounted for 4-5% of the N-15-nitrogen fed to shrimp after one day. This increased to 16% in the 'no sediment' treatment, and decreased to 2% in the 'sediment' treatment by day 15. It appears that dietary N was more accessible to the phytoplankton community in the absence of sediment. The difference is possibly because a proportion of the dietary N was buried in the sediment in the 'sediment' treatment, making it unavailable to the phytoplankton. Alternatively, the dietary N was retained in the NH4+ pool in the water column since phytoplankton growth, and hence, N utilization was lower in the 'sediment' treatment. The lower growth of phytoplankton in the 'sediment' treatment appeared to be related to higher turbidity, and hence, lower light availability for growth. The percentage N-15-nitrogen detected in the sediment was only 6% despite the high capacity for sedimentation of the large biomass of plankton detritus and shrimp waste. This suggests rapid remineralization of organic waste by the microbial community in the sediment resulting in diffusion of inorganic N sources into the water column. It is likely that most of the dietary N will ultimately be removed from the tank system by water discharges. Our study showed that N-15-nitrogen derived from aquaculture feed can be processed by the microbial community in outdoor aquaculture systems and provides a method for determining the effect of dietary N on ecosystems. However, a significant amount of the dietary N was not retained by the natural biota and is likely to be present in the soluble organic fraction. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Poultry can be managed under different feeding systems, depending on the husbandry skills and the feed available. These systems include the following: (1) a complete dry feed offered as a mash ad libitum; (2) the same feed offered as pellets or crumbles ad libitum; (3) a complete feed with added whole grain; (4) a complete wet feed given once or twice a day; (5) a complete feed offered on a restricted basis; (6) choice feeding. Of all these, an interesting alternative to offering complete diets is choice feeding which can be applied on both a small or large commercial scale. Under choice feeding or free-choice feeding birds are usually offered a choice between three types of feedstuffs: (a) an energy source (e.g. maize, rice bran, sorghum or wheat); (b) a protein source (e.g. soyabean meal, meat meal, fish meal or coconut meal) plus vitamins and minerals and (c), in the case of laying hens, calcium in granular form (i.e. oyster-shell grit). This system differs from the modern commercial practice of offering a complete diet comprising energy and protein sources, ground and mixed together. Under the complete diet system, birds are mainly only able to exercise their appetite for energy. When the environmental temperature varies, the birds either over- or under-consume protein and calcium. The basic principle behind practising choice feeding with laying hens is that individual hens are able to select from the various feed ingredients on offer and compose their own diet, according to their actual needs and production capacity. A choice-feeding system is of particular importance to small poultry producers in developing countries, such as Indonesia, because it can substantially reduce the cost of feed. The system is flexible and can be constructed in such a way that the various needs of a flock of different breeds, including village chickens, under different climates can be met. The system also offers a more effective way to use home-produced grain, such as maize, and by-products, such as rice bran, in developing countries. Because oyster-shell grit is readily available in developing countries at lower cost than limestone, the use of cheaper oyster-shell grit can further benefit small-holders in these countries. These benefits apart, simpler equipment suffices when designing and building a feed mixer on the farm, and transport costs are lower. If whole (unground) grain is used, the intake of which is accompanied by increased efficiency of feed utilisation, the costs of grinding, mixing and many of the handling procedures associated with mash and pellet preparation are eliminated. The choice feedstuffs can all be offered in the current feed distribution systems, either by mixing the ingredients first or by using a bulk bin divided into three compartments.
Resumo:
In the periphery, physiological dopamine increases renal blood flow, decreases renal resistance and acts on the kidney tubule to enhance natriuresis and diuresis. The loss of dopamine function may be involoved in the deterioration in kidney function associated with ageing and may have a role in the pathogenesis of hypertension and diabetes. Intravenous dopamine is used as a positive inotrope in the treatment of acute heart failure and cardiogenic shock and as a diuretic in renal failure. The clinical uses of dopamine are limited, as it must be given intravenously, and also has widespread effects. The levels of peripheral dopamine can be increased by the administration of L-dopa to increase synthesis, prodrugs to release dopamine (docarpamine, glu-dopa) or by inhibiting the breakdown of dopamine (nitecapone). Preliminary clinical trials suggest that docarpamine may be useful in patients with low cardiac output syndrome after cardiac surgery and in refractory cirrhotic ascites. Ibopamine is an agonist at dopamine D1 and D2 receptors, which may retard the progression of chronic renal failure. Gludopa is selective for the kidney thus avoiding widespread side effects. The early clinical studies with ibopamine as a diuretic in heart failure were favourable but the subsequent large mortality study showed that ibopamine increased mortality. Fenoldopam is a selective dopamine D1 receptor agonist. Intravenous fenoldopam may be useful in the treatment of hypertension associated with coronary artery bypass surgery or in hypertensive emergencies. Although our understanding of physiological and pathological roles of peripheral dopamine has been increasing rapidly in recent times, we still need more information to allow the design of clinically useful drugs that modify these roles. One priority is an orally-active selective dopamine D1 receptor agonist.
Resumo:
The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.