998 resultados para Vieussens, Raymond, 1641-1715
Resumo:
PURPOSE OF REVIEW: Recent advances in nanotechnology have addressed some of the issues related to lack of selectivity and nonspecific toxicities associated with conventional chemotherapy. Nanoparticles are therapeutic carriers that can be fine tuned for specific application and for passive or active tumor targeting. RECENT FINDINGS: Although the nanoparticle field is rapidly expanding, there are to date only six nanoparticle-based drug delivery platforms and two antibody-drug conjugates that are clinically approved for cancer therapy. Here, we review the clinical data of liposomal anthracyclines, nanoparticle formulations of paclitaxel and trastuzumab emtansine. We then briefly comment on efficacy and safety issues of nanoparticles, as well as on the next-generation nanoparticles for cancer therapy. SUMMARY: The emerging development of cancer nanotechnology offers the opportunity of reinvestigating the potential of cytotoxic agents, improving tumor targeting and drug delivery, leading to better safety profile and antitumor activity. Adding specificity to nanoparticles may allow personalization of cancer therapy using chemotherapy.
Resumo:
Summary: The impact of cancer in an adult on the family
Resumo:
In this study, (011)-highly oriented Sr, Nb co-doped BiFeO3 (BFO) thin films were successfully grown on SrRuO3/Si substrates by rf-magnetron sputtering. The presence of parasite magnetic phases was ruled out based on the high resolution x-ray diffraction data. BFO films exhibited a columnar-like grain growth with rms surface roughness values of 5.3 nm and average grain sizes of 65-70 nm for samples with different thicknesses. Remanent polarization values (2Pr) of 54 lC cm 2 at room temperature were found for the BFO films with a ferroelectric behavior characteristic of an asymmetric device structure. Analysis of the leakage mechanisms for this structure in negative bias suggests Schottky injection and a dominant Poole-Frenkel trap-limited conduction at room temperature. Oxygen vacancies and Fe3þ/Fe2þ trap centers are consistent with the surface chemical bonding states analysis from x-ray photoelectron spectroscopy data. The (011)-BFO/ SrRuO3/Si film structure exhibits a strong magnetic interaction at the interface between the multiferroic film and the substrate layer where an enhanced ferromagnetic response at 5 K was observed. Zero-field cooled (ZFC) and field cooled (FC) magnetization curves of this film system revealed a possible spin glass behavior at spin freezing temperatures below 30 K depending on the BFO film thickness.