891 resultados para Vehicle-to-Barrier Impact Tests.
Resumo:
The purpose of the book is to use Delphi as a vehicle to introduce some fundamental algorithms and to illustrate several mathematical and problem-solving techniques. This book is therefore intended to be more of a reference for problem-solving, with the solution expressed in Delphi. It introduces a somewhat eclectic collection of material, much of which will not be found in a typical book on Pascal or Delphi. Many of the topics have been used by the author over a period of about ten years at Bond University, Australia in various subjects from 1993 to 2003. Much of the work was connected with a data structures subject (second programming course) conducted variously in MODULA-2, Oberon and Delphi, at Bond University, however there is considerable other, more recent material, e.g., a chapter on Sudoku.
Resumo:
Charging of micron-size particulates, often appearing in fluorocarbon plasma etching experiments, is considered. It is shown that in inductively coupled and microwave slot-excited plasmas of C4F8 and Ar gas mixtures, the equilibrium particle charge and charge relaxation processes are controlled by a combination of microscopic electron, atomic (Ar+ and F+), and molecular ion (CF+ 3, CF+ 2, and CF+) currents. The impact of molecular ion currents on the particulate charging and charge relaxation processes is analyzed. It is revealed that in low-power (<0.5 kW) microwave slot-excited plasmas, the impact of the combined molecular ion current to the total positive microscopic current on the particle can be as high as 40%. The particulate charge relaxation rate in fluorocarbon plasmas appears to exceed 108 s-1, which is almost one order of magnitude higher than that from purely argon plasmas. This can be attributed to the impact of positive currents of fluorocarbon molecular ions, as well as to the electron density fluctuations with particle charge, associated with electron capture and release by the particulates.
Resumo:
Today’s economy is a knowledge-based economy in which knowledge is a crucial facilitator to individuals, as well as being an instigator of success. Due to the impact of globalisation, universities face new challenges and opportunities. Accordingly, they ought to be more innovative and have their own competitive advantages. One of the most important goals of universities is the promotion of students as professional knowledge workers. Therefore, knowledge sharing and transfer at the tertiary level between students and supervisors is vital in universities, as it decreases the budget and provides an affordable way to do research. Knowledge-sharing impact factors can be categorised in three groups, namely: organisational, individual, and technical factors. Individual barriers to knowledge sharing include: the lack of time and trust and the lack of communication skills and social networks. IT systems such as elearning, blogs and portals can increase the knowledge-sharing capability. However, it must be stated that IT systems are only tools and not solutions. Individuals are still responsible for sharing information and knowledge. This paper proposes a new research model to examine the effect of individual factors, organisational factors (learning strategy, trust culture, supervisory support) and technological factors on knowledge sharing in the research supervision process.
Resumo:
Background Few data on the relationship between temperature variability and childhood pneumonia are available. This study attempted to fill this knowledge gap. Methods A quasi-Poisson generalized linear regression model combined with a distributed lag nonlinear model was used to quantify the impacts of diurnal temperature range (DTR) and temperature change between two neighbouring days (TCN) on emergency department visits (EDVs) for childhood pneumonia in Brisbane, from 2001 to 2010, after controlling for possible confounders. Results An adverse impact of TCN on EDVs for childhood pneumonia was observed, and the magnitude of this impact increased from the first five years (2001–2005) to the second five years (2006–2010). Children aged 5–14 years, female children and Indigenous children were particularly vulnerable to TCN impact. However, there was no significant association between DTR and EDVs for childhood pneumonia. Conclusions As climate change progresses, the days with unstable weather pattern are likely to increase. Parents and caregivers of children should be aware of the high risk of pneumonia posed by big TCN and take precautionary measures to protect children, especially those with a history of respiratory diseases, from climate impacts.
Resumo:
Detection of faults in roller element bearing is a topic widely discussed in the scientific field. Bearings diagnostics is usually performed by analyzing experimental signals, almost always vibration signals, measured during operation. A number of signal processing techniques have been proposed and applied to measured vibrations. The diagnostic effectiveness of the techniques depends on their capacities and on the environmental conditions (i.e. environmental noise). The current trend, especially from an industrial point of view, is to couple the prognostics to the diagnostics. The realization of a prognostic procedure require the definition of parameters able to describe the bearing condition during its operation. Monitoring the values of these parameters during time allows to define their trends depending on the progress of the wear. In this way, a relation between the variation of the selected parameters and the wear progress, useful for diagnostics and prognostics of bearings in real industrial applications, can be established. In this paper, a laboratory test-rig designed to perform endurance tests on roller element bearing is presented. Since the test-rig has operated for a short time, only some preliminary available results are discussed.
Resumo:
In design studio, sketching or visual thinking is part of processes that assist students to achieve final design solutions. At QUT’s First and Third Year industrial design studio classes we engage in a variety of teaching pedagogies from which we identify ‘Concept Bombs’ as an instrumental in the development of students’ visual thinking and reflective design process, and also as a vehicle to foster positive student engagement. Our ‘formula’: Concept Bombs are 20 minute design tasks focusing on rapid development of initial concept designs and free-hand sketching. Our experience and surveys tell us that students value intensive studio activities especially when combined with timely assessment and feedback. While conventional longer-duration design projects are essential for allowing students to engage with the full depth and complexity of the design process, short and intensive design activities introduce variety to the learning experience and enhance student engagement. This paper presents a comparative analysis of First and Third Year students’ Concept Bomb sketches to describe the types of design knowledge embedded in them, a discussion of limitations and opportunities of this pedagogical technique, as well as considerations for future development of studio based tasks of this kind as design pedagogies in the midst of current university education trends.