920 resultados para Vatican Library
Bourgeois Ethics Again: The Romances and the Conduct Texts in Oxford, Bodleian Library MS Ashmole 61
Resumo:
ed. by W. H. Lowe
Resumo:
SUSY_FLAVOR is a FORTRAN code calculating over 30 low-energy flavour- and CP-related bservables in the R-parity conserving MSSM. The code admits for the most general flavour structure of the SUSY breaking terms and complex flavour-diagonal couplings. It includes the numerically important resummation of chirally enhanced effects and it is fast enough for scanning over a large SUSY-parameter space. The program can be obtained from http://www.fuw.edu.pl/susy_flavor.
Resumo:
In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.
Resumo:
Devir Efrayim
Resumo:
par Arsène Darmesteter
Resumo:
by Albert T. Clay