887 resultados para Vasculogenic erectile dysfunction
Resumo:
Principle Mucopolysaccharidosis is an inborn error of metabolism causing glucosaminoglycans tissue storage. Cardiovascular involvement is variable but contributes significantly towards the morbidity and mortality of the patients. Objective To characterise the echocardiographic abnormalities in children and adolescents with different types of mucopolysaccharidosis. Method Echocardiograms and medical records of 28 patients aged 2–14 years, seen from 2003 to 2005, were revised. At that time, the enzymatic replacement therapy was still not available in our institution.Results Echocardiographic alterations were detected in 26 patients (93 per cent), whereas 16 (57 per cent) had abnormal auscultation, and only 6 (21 per cent) presented with cardiovascular complaint. Mitral valve thickening with dysfunction (regurgitation, stenosis, or double lesion) was diagnosed in 60.8 per cent, left ventricular hypertrophy in 43 per cent and aortic valve thickening with regurgitation in 35.8 per cent of the patients. There was no systolic dysfunction and mild left diastolic dysfunction was shown in 21.5 per cent of the patients. Pulmonary hypertension was present in 36 per cent of the patients, causing the only two deaths recorded. There was a strong association between the accumulation of dermatan sulphate and the presence of mitral valve dysfunction (p = 0.0003), aortic valve dysfunction (p = 0.006), and pulmonary hypertension (p = 0.006). Among individuals with two or more examinations, 82 per cent had a worsening evolution. Conclusions Echocardiographic alterations in children with Mucopolysaccharidosis are frequent and have a progressive character Left valve lesions, ventricular hypertrophy, and pulmonary hypertension were the most common findings and there was an association between the accumulation of dermatan sulphate and cardiovascular involvement. Unlike in adults, pulmonary hypertension was the main cause of death, not left ventricle systolic dysfunction
Resumo:
Aspergillus fumigatus is a common mould whose spores are a component of the normal airborne flora. Immune dysfunction permits developmental growth of inhaled spores in the human lung causing aspergillosis, a significant threat to human health in the form of allergic, and life-threatening invasive infections. The success of A. fumigatus as a pathogen is unique among close phylogenetic relatives and is poorly characterised at the molecular level. Recent genome sequencing of several Aspergillus species provides an exceptional opportunity to analyse fungal virulence attributes within a genomic and evolutionary context. To identify genes preferentially expressed during adaptation to the mammalian host niche, we generated multiple gene expression profiles from minute samplings of A. fumigatus germlings during initiation of murine infection. They reveal a highly co-ordinated A. fumigatus gene expression programme, governing metabolic and physiological adaptation, which allows the organism to prosper within the mammalian niche. As functions of phylogenetic conservation and genetic locus, 28% and 30%, respectively, of the A. fumigatus subtelomeric and lineage-specific gene repertoires are induced relative to laboratory culture, and physically clustered genes including loci directing pseurotin, gliotoxin and siderophore biosyntheses are a prominent feature. Locationally biased A. fumigatus gene expression is not prompted by in vitro iron limitation, acid, alkaline, anaerobic or oxidative stress. However, subtelomeric gene expression is favoured following ex vivo neutrophil exposure and in comparative analyses of richly and poorly nourished laboratory cultured germlings. We found remarkable concordance between the A. fumigatus host-adaptation transcriptome and those resulting from in vitro iron depletion, alkaline shift, nitrogen starvation and loss of the methyltransferase LaeA. This first transcriptional snapshot of a fungal genome during initiation of mammalian infection provides the global perspective required to direct much-needed diagnostic and therapeutic strategies and reveals genome organisation and subtelomeric diversity as potential driving forces in the evolution of pathogenicity in the genus Aspergillus.