992 resultados para Variability Models
Resumo:
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.
Resumo:
The paper considers the use of artificial regression in calculating different types of score test when the log
Resumo:
We analyse the role of time-variation in coefficients and other sources of uncertainty in exchange rate forecasting regressions. Our techniques incorporate the notion that the relevant set of predictors and their corresponding weights, change over time. We find that predictive models which allow for sudden rather than smooth, changes in coefficients significantly beat the random walk benchmark in out-of-sample forecasting exercise. Using innovative variance decomposition scheme, we identify uncertainty in coefficients' estimation and uncertainty about the precise degree of coefficients' variability, as the main factors hindering models' forecasting performance. The uncertainty regarding the choice of the predictor is small.
Resumo:
Time varying parameter (TVP) models have enjoyed an increasing popularity in empirical macroeconomics. However, TVP models are parameter-rich and risk over-fitting unless the dimension of the model is small. Motivated by this worry, this paper proposes several Time Varying dimension (TVD) models where the dimension of the model can change over time, allowing for the model to automatically choose a more parsimonious TVP representation, or to switch between different parsimonious representations. Our TVD models all fall in the category of dynamic mixture models. We discuss the properties of these models and present methods for Bayesian inference. An application involving US inflation forecasting illustrates and compares the different TVD models. We find our TVD approaches exhibit better forecasting performance than several standard benchmarks and shrink towards parsimonious specifications.
Resumo:
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time-varying parameter models. Our approach allows for the coefficient on each predictor to be: i) time varying, ii) constant over time or iii) shrunk to zero. The econometric methodology decides automatically which category each coefficient belongs in. Our empirical results indicate the benefits of such an approach.
Resumo:
Time-inconsistency is an essential feature of many policy problems (Kydland and Prescott, 1977). This paper presents and compares three methods for computing Markov-perfect optimal policies in stochastic nonlinear business cycle models. The methods considered include value function iteration, generalized Euler-equations, and parameterized shadow prices. In the context of a business cycle model in which a scal authority chooses government spending and income taxation optimally, while lacking the ability to commit, we show that the solutions obtained using value function iteration and generalized Euler equations are somewhat more accurate than that obtained using parameterized shadow prices. Among these three methods, we show that value function iteration can be applied easily, even to environments that include a risk-sensitive scal authority and/or inequality constraints on government spending. We show that the risk-sensitive scal authority lowers government spending and income-taxation, reducing the disincentive households face to accumulate wealth.
Resumo:
Aquest estudi consisteix en un anàlisi exploratori que té per objectiu principal la realització d’una reconstrucció de la temperatura de l’aigua i l’aire del llac Baikal durant els últims 40.000 anys. El treball s’ha dut a terme mitjançant l’ús de les proxys de reconstrucció de la temperatura y la utilització dels mètodes TEX86, MAAT, i la d’aportació de matèria orgànica d’origen terrestre, el BIT, aplicant-les a la mostra VER93-2 st GC-24, extreta pel Baikal Drilling Project a la conca central, amb l’objectiu de fer una aportació de dades paleoclimàtiques per tal d’aconseguir una millora en les interpretacions de futurs esdeveniments climàtics, i d’identificar esdeveniments climàtics sobtats, tals com els Heinrich events i els Youngers Dryas. Abans de la realització de l’anàlisi de les mostres s’ha dut a terme una extrapolació de l’edat en el testimoni, degut a que l’edat del core BDP VER93-2.st.GC-24 havia estat extrapolada fins a 277,5 cm de profunditat i en el present estudi s’ha ampliat l’anàlisi fins als 460 cm. de profunditat. Un cop obtinguts els resultats s’ha realitzat un càlcul de precisió i reproductibilitat per tal de conèixer una estimació quantitativa de la variabilitat de les dades obtingudes en les diferents proxys, en el qual ha estat demostrat una baixa variabilitat de les dades, exceptuant la variabilitat del TEX86 i la precisió del MAAT. Per a la localització dels diferents esdeveniments climàtics donats durant l’Holocè i el Plistocè s’han realitzat anàlisis gràfics dels propis resultats, juntament i en comparació dels resultats realitzats per Escala et al. (r.n.p [resultats no publicats]) en la conca sud, i de l’estudi publicat per Prokopenko et al., en el que s’analitza la presència de diatomees i matèria orgànica l’Atlàntic Nord. Els resultats integrats d’Escala et al.,(r.n.p) i els d’aquest estudi coincideixen en la datació dels diferents esdeveniments, amb alguna variació hipotèticament produïda per l’extrapolació d’edat realitzada en el present estudi i la gran aportació de matèria orgànica en el lloc d’extracció del testimoni per part del riu Selenga. Aquests resultats mostren una possible relació entre els esdeveniments climàtics i la variació de la temperatura de l’aigua.
Resumo:
We introduce and investigate a series of models for an infection of a diplodiploid host species by the bacterial endosymbiont Wolbachia. The continuous models are characterized by partial vertical transmission, cytoplasmic incompatibility and fitness costs associated with the infection. A particular aspect of interest is competitions between mutually incompatible strains. We further introduce an age-structured model that takes into account different fertility and mortality rates at different stages of the life cycle of the individuals. With only a few parameters, the ordinary differential equation models exhibit already interesting dynamics and can be used to predict criteria under which a strain of bacteria is able to invade a population. Interestingly, but not surprisingly, the age-structured model shows significant differences concerning the existence and stability of equilibrium solutions compared to the unstructured model.
Resumo:
Immunology-based interventions have been proposed as a promising curative chance to effectively attack postoperative minimal residual disease and distant metastatic localizations of prostate tumors. We developed a chimeric antigen receptor (CAR) construct targeting the human prostate-specific membrane antigen (hPSMA), based on a novel and high affinity specific mAb. As a transfer method, we employed last-generation lentiviral vectors (LV) carrying a synthetic bidirectional promoter capable of robust and coordinated expression of the CAR molecule, and a bioluminescent reporter gene to allow the tracking of transgenic T cells after in vivo adoptive transfer. Overall, we demonstrated that CAR-expressing LV efficiently transduced short-term activated PBMC, which in turn were readily stimulated to produce cytokines and to exert a relevant cytotoxic activity by engagement with PSMA+ prostate tumor cells. Upon in vivo transfer in tumor-bearing mice, CAR-transduced T cells were capable to completely eradicate a disseminated neoplasia in the majority of treated animals, thus supporting the translation of such approach in the clinical setting.
Resumo:
Fixed delays in neuronal interactions arise through synaptic and dendritic processing. Previous work has shown that such delays, which play an important role in shaping the dynamics of networks of large numbers of spiking neurons with continuous synaptic kinetics, can be taken into account with a rate model through the addition of an explicit, fixed delay. Here we extend this work to account for arbitrary symmetric patterns of synaptic connectivity and generic nonlinear transfer functions. Specifically, we conduct a weakly nonlinear analysis of the dynamical states arising via primary instabilities of the stationary uniform state. In this way we determine analytically how the nature and stability of these states depend on the choice of transfer function and connectivity. While this dependence is, in general, nontrivial, we make use of the smallness of the ratio in the delay in neuronal interactions to the effective time constant of integration to arrive at two general observations of physiological relevance. These are: 1 - fast oscillations are always supercritical for realistic transfer functions. 2 - Traveling waves are preferred over standing waves given plausible patterns of local connectivity.
Resumo:
Debris flow susceptibility mapping at a regional scale has been the subject of various studies. The complexity of the phenomenon and the variability of local controlling factors limit the use of process-based models for a first assessment. GISbased approaches associating an automatic detection of the source areas and a simple assessment of the debris flow spreading may provide a substantial basis for a preliminary susceptibility assessment at the regional scale. The use of a digital elevation model, with a 10 m resolution, for the Canton de Vaud territory (Switzerland), a lithological map and a land use map, has allowed automatic identification of the potential source areas. The spreading estimates are based on basic probabilistic and energy calculations that allow to define the maximal runout distance of a debris flow.
Resumo:
The ability to model biodiversity patterns is of prime importance in this era of severe environmental crisis. Species assemblage along environmental gradient is subject to the interplay of biotic interactions in complement to abiotic environmental filtering. Accounting for complex biotic interactions for a wide array of species remains so far challenging. Here, we propose to use food web models that can infer the potential interaction links between species as a constraint in species distribution models. Using a plant-herbivore (butterfly) interaction dataset, we demonstrate that this combined approach is able to improve both species distribution and community forecasts. Most importantly, this combined approach is very useful in rendering models of more generalist species that have multiple potential interaction links, where gap in the literature may be recurrent. Our combined approach points a promising direction forward to model the spatial variation of entire species interaction networks. Our work has implications for studies of range shifting species and invasive species biology where it may be unknown how a given biota might interact with a potential invader or in future climate.