993 resultados para VISCOSITY MEASUREMENTS
Resumo:
Photodynamic therapy of deep or nodular skin tumours is currently limited by the poor tissue penetration of the porphyrin precursor 5-aminolevulinic acid (ALA) and preformed photosensitisers. In this study, we investigated the potential of jet injection to deliver both ALA and a preformed photosensitiser (meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate, TMP) into a defined volume of skin. Initial studies using a model hydrogel showed that as standoff distance is increased, injection depth decreases. As the ejected volume is increased, injection depth increases. It was also shown, for the first time, that, as injection solution viscosity was increased, for a given injection setting and standoff distance, both total depth of jet penetration, L-t, and depth at which the maximum width of the penetration pattern occurred, L-m, decreased progressively. For a standoff distance of zero, the maximum width of the penetration pattern, L-w, increased progressively with increasing viscosity at each of the injection settings. Conversely, when the standoff distance was 2.5 mm, L-w decreased progressively with increasing viscosity. Studies with neonate porcine skin revealed that an injection protocol comprising an 8.98 mPas solution, an arbitrary injection setting of 8 and a standoff distance of zero was capable of delivering photosensitisers to a volume of tissue (L-t of 2.91 mm, L-m of 2.14 mm, L-w of 5. 10 mm) comparable to that occupied by a typical nodular basal cell carcinoma. Both ALA and TMP were successfully delivered using jet injection, with peak tissue concentrations (67.3 mg cm(-3) and 5.6 mg cm(-3), respectively) achieved at a depth of around 1.0 mm and substantial reductions in drug concentration seen at depths below 3.0 mm. Consequently, jet injection may be suitable for selective targeting of ALA or preformed photosensitisers to skin tumours. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Interferometry has been used to investigate the spatio-temporal evolution of electron number density following 248 nm laser ablation of a magnesium target. Fringe shifts were measured as a function of laser power density for a circular spot obtained using a random phase plate. Line averaged electron number densities were obtained at delay times up to ∼100 ns after the laser pulse. Density profiles normal to the target surface were recorded for power densities on target in the range 125–300 MW cm−2.
Resumo:
Sampling and specimen preparation produce changes in mean effective stresses and pore water pressures, even with ‘perfect sampling’. The paper takes an existing simplified three-parameter cross-anisotropic elastic model and uses it to model these changes. The required ratio of cross-anisotropic parameters J/3G* can be obtained from standard CIU triaxial tests. If measurements are also made of suctions in unloaded specimens in the laboratory, then a combination of J/3G*, the measured suction, and the effective overburden pressure permits an estimation of the horizontal effective pressure and the K 0 ‘at rest’ coefficient. This can be helpful in numerical modelling that needs to start from in situ conditions, and in planning pressure levels for reconsolidation of clay specimens in the laboratory. Tests were done on Belfast Upper Boulder Clay from a depth of 28 m. Values of horizontal in situ effective stress estimated from these measurements compare favorably with conventional estimates of the ‘at rest’ coefficient K 0 and the overconsolidation ratio. Estimates of horizontal stress in London Clay were made using published data and the results compared with actual measurements. Again reasonable agreement was obtained.
Resumo:
Ionic liquids (ILs) having either cations or anions derived from naturally occurring amino acids have been synthesized and characterized as amino acid-based ionic liquids (AAILs) In this work, the experimental measurements of the temperature dependence or density. viscosity, heat capacity, and thermal conductivity of several AAILs, namely, tributylmethylammonium serinate ([N-444][Ser], tributylmethylammonium taurmate ([N-444][Tau]) tributylmethylammonium lysinate a [N-444][ Lys]), tributylmethylammonium threonate ([N-444][Thr]), tetrabutylphosphonium serinate ([P-4444][Ser]), tetrabutylphosphonium taurmate ([P-4444][Tau]), tetrabutylphosphonium lysinate ([P-4444][Lys]), tetrabutylphosphonium threonate P-4444 Thr tetrabutylphosphonium prolinate P-4444 ((Pro(), tetrabutylphosphonium valinate ([P-4444][Val]), and tetrabutylphosphonium cysteinate ([P-4444][Cys]), are presented The influence of cations and anions on studied properties is discussed. On the basis of experimental data. the QSPR (quantitative structure property relationship) correlations and group contribution methods for thermophysical properties of AAILs have been developed, which form the basis for the development of the computer-aided molecular design (CAMD) of AAILs It has also been demonstrated that that the predictive data obtained by con elation methods ale in good agreement with the experimental data The correlations developed, herein. can thus be used to evaluate the studied thermophysical properties of AAILs for use in process design or in the CAMD of new AAILs
Resumo:
We present results based on mid-infrared (3.6-30 mm) observations with the Spitzer Space Telescope of the nearby Type IIP supernova 2005af. We report the first ever detection of the SiO molecule in a Type IIP supernova. Together with the detection of the CO fundamental, this is an exciting finding as it may signal the onset of dust condensation in the ejecta. From a wealth of fine-structure lines we provide abundance estimates for stable Ni, Ar, and Ne that, via spectral synthesis, may be used to constrain nucleosynthesis models.
Resumo:
The development of artificial neural network (ANN) models to predict the rheological behavior of grouts is described is this paper and the sensitivity of such parameters to the variation in mixture ingredients is also evaluated. The input parameters of the neural network were the mixture ingredients influencing the rheological behavior of grouts, namely the cement content, fly ash, ground-granulated blast-furnace slag, limestone powder, silica fume, water-binder ratio (w/b), high-range water-reducing admixture, and viscosity-modifying agent (welan gum). The six outputs of the ANN models were the mini-slump, the apparent viscosity at low shear, and the yield stress and plastic viscosity values of the Bingham and modified Bingham models, respectively. The model is based on a multi-layer feed-forward neural network. The details of the proposed ANN with its architecture, training, and validation are presented in this paper. A database of 186 mixtures from eight different studies was developed to train and test the ANN model. The effectiveness of the trained ANN model is evaluated by comparing its responses with the experimental data that were used in the training process. The results show that the ANN model can accurately predict the mini-slump, the apparent viscosity at low shear, the yield stress, and the plastic viscosity values of the Bingham and modified Bingham models of the pseudo-plastic grouts used in the training process. The results can also predict these properties of new mixtures within the practical range of the input variables used in the training with an absolute error of 2%, 0.5%, 8%, 4%, 2%, and 1.6%, respectively. The sensitivity of the ANN model showed that the trend data obtained by the models were in good agreement with the actual experimental results, demonstrating the effect of mixture ingredients on fluidity and the rheological parameters with both the Bingham and modified Bingham models.
Resumo:
A method for obtaining quantitative information about electric field and charge distributions from proton imaging measurements of laser-induced plasmas is presented. A parameterised charge distribution is used as target plasma. The deflection of a proton beam by the electric field of such a plasma is simulated numerically as well as the resulting proton density, which will be obtained on a screen behind the plasma according to the proton imaging technique. The parameters of the specific charge distributions are delivered by a combination of linear regression and nonlinear fitting of the calculated proton density distribution to the measured optical density of a radiochromic film screen changed by proton exposure. It is shown that superpositions of spherical Gaussian charge distributions as target plasma are sufficient to simulate various structures in proton imaging measurements, which makes this method very flexible.