988 resultados para VIBRATIONAL-SPECTRA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared (IR) spectra of normal, hyperplasia, fibroadenoma and carcinoma tissues of human breast obtained from 96 patients have been determined and analyzed statistically. Several spectral differences were detected in the frequency regions of N-H stretching, amide I, II and III bands: (1) the bands in the region 3000-3600cm-1 shifted to lower frequencies for the carcinomatous tissue; (2) the A(3300)/A(3075) absorbance ratio was significantly higher for the fibroadenoma than for the other types of tissues; (3) the frequency of the a-helix amide I band decreased for the malignant tissue, while the corresponding beta -sheet amide I band frequency increased; (4) the A(1657)/A(1635) and A(1553)/A(1540) absorbance ratios were the highest for fibroadenoma and carcinoma tissues; (5) the A(1680)/A(1657) absorbance ratio decreased significantly in the order of normal > hyperplasia > fibroadenoma > carcinoma; (6) the A(1651)/A(1545) absorbance ratio increased slightly for the fibroadenoma and the carcinoma tissues; (7) the bands at 1204 and 1278 cm(-1), assigned to the vibrational modes of the collagen, did not appear in the original spectra as resolved peaks and were distinctly stronger in the deconvoluted spectra of the carcinoma tissue and (8) the A(1657)/A(1204) and A(1657)/A(1278) absorbance ratios, both yielding information on the relative content of collagen, increased in the order of normal < hyperplasia < carcinoma < fibroadenoma. The said differences imply that the information is useful for the diagnosis of breast cancer and malignant breast abnormalities, and may serve as a basis for further studies on conformational changes in tissue proteins during carcinogenesis. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical method to calculate multidimensional Franck-Condon factors including Duschinsky effects is described and used to simulate the photoelectron spectrum of the anion SO. Geometry optimizations and harmonic vibrational frequency calculations have been performed on the XA(1) state of SO2 and (XB1)-B-2 state of SO2. Franck-Condon analyses and spectral simulation were carried out on the first photoelectron band of SO2. The theoretical spectra obtained by employing CCSD(T)/6-31 I+G(2d,p) values are in excellent agreement with the experiment. In addition, the equilibrium geometric parameters, r(c)(OS) = 0.1508 +/- 0.0005 nm and theta(e)(O-S-0) = 113.5 +/- 0.5 degrees, of the (XB1)-B-2 state of SO2, are derived by employing an iterative Franck-Condon analysis procedure in the spectral simulation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rowland, J.J. (2002) Interpreting Analytical Spectra with Evolutionary Computation. In: Fogel, G.B. and Corne, D.W. (eds), Evolutionary Computation in Bioinformatics. Morgan Kaufmann, San Francisco, pp 341--365, ISBN 1-55860-797-8

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphorescence excitation spectra of two thiones, 4-H-1-xanthione (XT) and 4-H-1-pyrane-4-thione (PT), cooled in a supersonic jet were investigated. The vibronic lineshape of the T1z origin of PT measured by cavity ring-down spectroscopy is considered and the excited state rotational constants are calculated. For XT the 3A2(nπ* ) → X1A1 phosphorescence excitation spectrum was investigated in the region 14900-17600 cm-1. The structure observed is shown to be due to the T1← S0 absorption and an assignment in terms of the vibronic structure of the band is proposed. A previous assignment of the S1 ← S0 origin is considered and the transition involved is shown to be most probably due to the absorption of a vibronic tiplet state T1z,v7. An alternative but tentative assignment of the S1,0 ←S0,0 transition is suggested. In the case of PT the phosphorescence excitation spectrum was investigated in the region of the 1A2(ππ*) ← X1A1 absorption band between 27300 and 28800 cm-1. The spectrum exhibits complex features which are typical for the strong vibronic coupling case of two adjacent electronic states. The observed intermediate level structure was attributed to the coupling with a lower lying dark electronic state 1B1(nπ*2), whose origin was estimated to be ~ 825 - 1025 cm-1 below the origin of 1A2(ππ*)0. Consequences of the vibronic coupling on the decay dynamics of 1A2(ππ*) as well as tentative assignments of vibronic transitions 1A2(ππ*)v ← X1A1 are also discussed. In the T1z ← S0 cavity ring-down absorption spectrum of PT, the vibronic lineshape of the T1z origin is analysed. As the T1z line is separated from the T1x,1y lines by a large zero-field splitting it is possible to use an Asyrot-like program to calculate the vibrational-rotational parameters determining the lineshape. It is shown that PT is non-planar in the first excited triplet state and the lineshape is composed of a mixture of A-type and C-type bandshapes. The non-planarity of PT is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spectra of jet-cooled C2H2 recorded with an FTIR spectrometer, the ν5, ν4 + ν5, ν3 and ν2 + ν4 + ν5 bands all exhibit an intensity distribution corresponding to ∼6 K for rotation, with no evidence of nuclear spin conversion. Spectra of C2H2 isolated in solid p-H2 show no evidence of rotation of C2H2. The strong interaction between ν3 and ν2 + ν4 + ν5 in the gas phase is diminished in solid p-H2. Lines associated with dimer, trimer and tetramer of C2H2 are identified. Spectral features characteristic of solid state acetylene are observed under jet-cooled conditions. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set-up combining a high resolution Fourier transform interferometer and a quadrupole mass spectrometer with a supersonic jet expansion produced thanks to a large turbomolecular pumping unit is described. A rotational temperature close to 3 K is demonstrated. Vibration-vibration energy transfer in the expansion affecting the v2 = 1 state in N2O is monitored in the presence of various collision partners. The transfer from the v 2 = 1 state of N2O towards the quasi resonant, lower energy v2 = 1 state of OCS is demonstrated, in particular. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrologic research is a very demanding application of fiber-optic distributed temperature sensing (DTS) in terms of precision, accuracy and calibration. The physics behind the most frequently used DTS instruments are considered as they apply to four calibration methods for single-ended DTS installations. The new methods presented are more accurate than the instrument-calibrated data, achieving accuracies on the order of tenths of a degree root mean square error (RMSE) and mean bias. Effects of localized non-uniformities that violate the assumptions of single-ended calibration data are explored and quantified. Experimental design considerations such as selection of integration times or selection of the length of the reference sections are discussed, and the impacts of these considerations on calibrated temperatures are explored in two case studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium structure of acetylene (also named ethyne) has been reinvestigated to resolve the small discrepancies noted between different determinations. The size of the system as well as the large amount of available experimental data provides the quite unique opportunity to check the magnitude and relevance of various contributions to equilibrium structure as well as to verify the accuracy of experimental results. With respect to pure theoretical investigation, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, inclusion of core correlation effects as well as relativistic and diagonal Born-Oppenheimer corrections. In particular, it is found that the extrapolation to the complete basis set limit, the inclusion of higher excitations in the electronic-correlation treatment and the relativistic corrections are of the same order of magnitude. It also appears that a basis set as large as a core-valence quintuple-zeta set is required for accurately accounting for the inner-shell correlation contribution. From a pure experimental point of view, the equilibrium structure has been determined using very accurate rotational constants recently obtained by a global analysis (that is to say that all non-negligible interactions are explicitely included in the Hamiltonian matrix) of rovibrational spectra. Finally, a semi-experimental equilibrium structure (where the equilibrium rotational constants are obtained from the experimental ground state rotational constants and computed rovibrational corrections) has been obtained from the available experimental ground-state rotational constants for ten isotopic species corrected for computed vibrational corrections. Such a determination led to the revision of the ground-state rotational constants of two isotopologues, thus showing that structural determination is a good method to identify errors in experimental rotational constants. The three structures are found in a very good agreement, and our recommended values are rCC 120.2958(7) pm and rCH 106.164(1) pm. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper was selected by the editors of the Journal of Chemical Physics as one of the few of the many notable JCP articles published in 2009 that present ground-breaking research