899 resultados para Uncertainty of forecasts
Resumo:
While state-of-the-art models of Earth's climate system have improved tremendously over the last 20 years, nontrivial structural flaws still hinder their ability to forecast the decadal dynamics of the Earth system realistically. Contrasting the skill of these models not only with each other but also with empirical models can reveal the space and time scales on which simulation models exploit their physical basis effectively and quantify their ability to add information to operational forecasts. The skill of decadal probabilistic hindcasts for annual global-mean and regional-mean temperatures from the EU Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project is contrasted with several empirical models. Both the ENSEMBLES models and a “dynamic climatology” empirical model show probabilistic skill above that of a static climatology for global-mean temperature. The dynamic climatology model, however, often outperforms the ENSEMBLES models. The fact that empirical models display skill similar to that of today's state-of-the-art simulation models suggests that empirical forecasts can improve decadal forecasts for climate services, just as in weather, medium-range, and seasonal forecasting. It is suggested that the direct comparison of simulation models with empirical models becomes a regular component of large model forecast evaluations. Doing so would clarify the extent to which state-of-the-art simulation models provide information beyond that available from simpler empirical models and clarify current limitations in using simulation forecasting for decision support. Ultimately, the skill of simulation models based on physical principles is expected to surpass that of empirical models in a changing climate; their direct comparison provides information on progress toward that goal, which is not available in model–model intercomparisons.
Resumo:
Effective disaster risk management relies on science-based solutions to close the gap between prevention and preparedness measures. The consultation on the United Nations post-2015 framework for disaster risk reduction highlights the need for cross-border early warning systems to strengthen the preparedness phases of disaster risk management, in order to save lives and property and reduce the overall impact of severe events. Continental and global scale flood forecasting systems provide vital early flood warning information to national and international civil protection authorities, who can use this information to make decisions on how to prepare for upcoming floods. Here the potential monetary benefits of early flood warnings are estimated based on the forecasts of the continental-scale European Flood Awareness System (EFAS) using existing flood damage cost information and calculations of potential avoided flood damages. The benefits are of the order of 400 Euro for every 1 Euro invested. A sensitivity analysis is performed in order to test the uncertainty in the method and develop an envelope of potential monetary benefits of EFAS warnings. The results provide clear evidence that there is likely a substantial monetary benefit in this cross-border continental-scale flood early warning system. This supports the wider drive to implement early warning systems at the continental or global scale to improve our resilience to natural hazards.
Resumo:
This paper proposes and tests a new framework for weighting recursive out-of-sample prediction errors according to their corresponding levels of in-sample estimation uncertainty. In essence, we show how to use the maximum possible amount of information from the sample in the evaluation of the prediction accuracy, by commencing the forecasts at the earliest opportunity and weighting the prediction errors. Via a Monte Carlo study, we demonstrate that the proposed framework selects the correct model from a set of candidate models considerably more often than the existing standard approach when only a small sample is available. We also show that the proposed weighting approaches result in tests of equal predictive accuracy that have much better sizes than the standard approach. An application to an exchange rate dataset highlights relevant differences in the results of tests of predictive accuracy based on the standard approach versus the framework proposed in this paper.
Resumo:
The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. Weather forecasts using multiple NWPs from various weather centres implemented on catchment hydrology can provide significantly improved early flood warning. The availability of global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a new opportunity for the development of state-of-the-art early flood forecasting systems. This paper presents a case study using the TIGGE database for flood warning on a meso-scale catchment (4062 km2) located in the Midlands region of England. For the first time, a research attempt is made to set up a coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE database. The study shows that precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial precipitation variability on such a comparatively small catchment, which indicates need to improve NWPs resolution and/or disaggregating techniques to narrow down the spatial gap between meteorology and hydrology. The spread of discharge forecasts varies from centre to centre, but it is generally large and implies a significant level of uncertainties. Nevertheless, the results show the TIGGE database is a promising tool to forecast flood inundation, comparable with that driven by raingauge observation.
Resumo:
Current methods for initialising coupled atmosphere-ocean forecasts often rely on the use of separate atmosphere and ocean analyses, the combination of which can leave the coupled system imbalanced at the beginning of the forecast, potentially accelerating the development of errors. Using a series of experiments with the European Centre for Medium-range Weather Forecasts coupled system, the magnitude and extent of these so-called initialisation shocks is quantified, and their impact on forecast skill measured. It is found that forecasts initialised by separate ocean and atmospheric analyses do exhibit initialisation shocks in lower atmospheric temperature, when compared to forecasts initialised using a coupled data assimilation method. These shocks result in as much as a doubling of root-mean-square error on the first day of the forecast in some regions, and in increases that are sustained for the duration of the 10-day forecasts performed here. However, the impacts of this choice of initialisation on forecast skill, assessed using independent datasets, were found to be negligible, at least over the limited period studied. Larger initialisation shocks are found to follow a change in either the atmospheric or ocean model component between the analysis and forecast phases: changes in the ocean component can lead to sea surface temperature shocks of more than 0.5K in some equatorial regions during the first day of the forecast. Implications for the development of coupled forecast systems, particularly with respect to coupled data assimilation methods, are discussed.
Resumo:
This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning’s coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.
Resumo:
Recent work has shown that both the amplitude of upper-level Rossby waves and the tropopause sharpness decrease with forecast lead time for several days in some operational weather forecast systems. In this contribution, the evolution of error growth in a case study of this forecast error type is diagnosed through analysis of operational forecasts and hindcast simulations. Potential vorticity (PV) on the 320-K isentropic surface is used to diagnose Rossby waves. The Rossby-wave forecast error in the operational ECMWF high-resolution forecast is shown to be associated with errors in the forecast of a warm conveyor belt (WCB) through trajectory analysis and an error metric for WCB outflows. The WCB forecast error is characterised by an overestimation of WCB amplitude, a location of the WCB outflow regions that is too far to the southeast, and a resulting underestimation of the magnitude of the negative PV anomaly in the outflow. Essentially the same forecast error development also occurred in all members of the ECMWF Ensemble Prediction System and the Met Office MOGREPS-15 suggesting that in this case model error made an important contribution to the development of forecast error in addition to initial condition error. Exploiting this forecast error robustness, a comparison was performed between the realised flow evolution, proxied by a sequence of short-range simulations, and a contemporaneous forecast. Both the proxy to the realised flow and the contemporaneous forecast a were produced with the Met Office Unified Model enhanced with tracers of diabatic processes modifying potential temperature and PV. Clear differences were found in the way potential temperature and PV are modified in the WCB between proxy and forecast. These results demonstrate that differences in potential temperature and PV modification in the WCB can be responsible for forecast errors in Rossby waves.
Resumo:
Attitudes towards risk and uncertainty have been indicated to be highly context-dependent, and to be sensitive to the measurement technique employed. We present data collected in controlled experiments with 2,939 subjects in 30 countries measuring risk and uncertainty attitudes through incentivized measures as well as survey questions. Our data show clearly that measures correlate not only within decision contexts or measurement methods, but also across contexts and methods. This points to the existence of one underlying “risk preference”, which influences attitudes independently of the measurement method or choice domain. We furthermore find that answers to a general and a financial survey question correlate with incentivized lottery choices in most countries. Incentivized and survey measures also correlate significantly between countries. This opens the possibility to conduct cultural comparisons on risk attitudes using survey instruments.
Resumo:
Debate over the late Quaternary megafaunal extinctions has focussed on whether human colonisation or climatic changes were more important drivers of extinction, with few extinctions being unambiguously attributable to either. Most analyses have been geographically or taxonomically restricted and the few quantitative global analyses have been limited by coarse temporal resolution or overly simplified climate reconstructions or proxies. We present a global analysis of the causes of these extinctions which uses high-resolution climate reconstructions and explicitly investigates the sensitivity of our results to uncertainty in the palaeological record. Our results show that human colonisation was the dominant driver of megafaunal extinction across the world but that climatic factors were also important. We identify the geographic regions where future research is likely to have the most impact, with our models reliably predicting extinctions across most of the world, with the notable exception of mainland Asia where we fail to explain the apparently low rate of extinction found in in the fossil record. Our results are highly robust to uncertainties in the palaeological record, and our main conclusions are unlikely to change qualitatively following minor improvements or changes in the dates of extinctions and human colonisation.
Resumo:
Background: Coordination of activity between the amygdala and ventromedial prefrontal cortex (vmPFC) is important for fear-extinction learning. Aberrant recruitment of this circuitry is associated with anxiety disorders. Here, we sought to determine if individual differences in future threat uncertainty sensitivity, a potential risk factor for anxiety disorders, underly compromised recruitment of fear extinction circuitry. Twenty-two healthy subjects completed a cued fear conditioning task with acquisition and extinction phases. During the task, pupil dilation, skin conductance response, and functional magnetic resonance imaging were acquired. We assessed the temporality of fear extinction learning by splitting the extinction phase into early and late extinction. Threat uncertainty sensitivity was measured using self-reported intolerance of uncertainty (IU). Results: During early extinction learning, we found low IU scores to be associated with larger skin conductance responses and right amygdala activity to learned threat vs. safety cues, whereas high IU scores were associated with no skin conductance discrimination and greater activity within the right amygdala to previously learned safety cues. In late extinction learning, low IU scores were associated with successful inhibition of previously learned threat, reflected in comparable skin conductance response and right amgydala activity to learned threat vs. safety cues, whilst high IU scores were associated with continued fear expression to learned threat, indexed by larger skin conductance and amygdala activity to threat vs. safety cues. In addition, high IU scores were associated with greater vmPFC activity to threat vs. safety cues in late extinction. Similar patterns of IU and extinction learning were found for pupil dilation. The results were specific for IU and did not generalize to self-reported trait anxiety. Conclusions: Overall, the neural and psychophysiological patterns observed here suggest high IU individuals to disproportionately generalize threat during times of uncertainty, which subsequently compromises fear extinction learning. More broadly, these findings highlight the potential of intolerance of uncertainty-based mechanisms to help understand pathological fear in anxiety disorders and inform potential treatment targets.
Resumo:
The effects of data uncertainty on real-time decision-making can be reduced by predicting early revisions to US GDP growth. We show that survey forecasts efficiently anticipate the first-revised estimate of GDP, but that forecasting models incorporating monthly economic indicators and daily equity returns provide superior forecasts of the second-revised estimate. We consider the implications of these findings for analyses of the impact of surprises in GDP revision announcements on equity markets, and for analyses of the impact of anticipated future revisions on announcement-day returns.
Resumo:
The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD)models. In this paper an objectivemetric to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash is presented. The 5 metric is based on the fractions skill score (FSS). Thismeasure of skill provides more information than traditional point-bypoint metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale overwhich skill is being assessed. The FSS determines the scale overwhich a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The 10 idealised scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200–700km2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite retrieved ash data and evaluate VATD forecasts over a long time period.
Resumo:
We consider the extent to which long-horizon survey forecasts of consumption, investment and output growth are consistent with theory-based steady-state values, and whether imposing these restrictions on long-horizon forecasts will enhance their accuracy. The restrictions we impose are consistent with a two-sector model in which the variables grow at different rates in steady state. The restrictions are imposed by exponential-tilting of simple auxiliary forecast densities. We show that imposing the consumption-output restriction yields modest improvements in the long-horizon output growth forecasts, and larger improvements in the forecasts of the cointegrating combination of consumption and output: the transformation of the data on which accuracy is assessed plays an important role.
Resumo:
While there is an extensive and still growing body of literature on women in academia and the challenges they encounter in career progression, there is little research on their experience specifically within a business school setting. In this study, we attempt to address this gap and examine the experiences and career development of female academics in a business school and how these are impacted by downsizing programmes. To this end, an exploratory case study is conducted. The findings of this study show that female business school academics experience numerous challenges in terms of promotion and development, networking, and the multiple and conflicting demands placed upon them. As a result, the lack of visibility seems to be a pertinent issue in terms of their career progression. Our data also demonstrates that that, paradoxically, during periods of downsizing women become more visible and thus vulnerable to layoffs as a consequence of the challenges and pressures created in their environment during this process. In this paper, we argue that this heightened visibility, and being subject to possible layoffs, further reproduces inequality regimes in academia.