972 resultados para Ultrafast MRI
Resumo:
Background: Fibroblast growth factor 23 (FGF23) concentrations increase early in chronic kidney disease (CKD), and the influence of current CKD-mineral and bone disorder (MBD) therapies on serum FGF23 levels is still under investigation. Methods: In this post-hoc analysis of a randomized clinical trial, phosphate binders and calcitriol were washed out of 72 hemodialysis patients who were then submitted to bone biopsy, coronary tomography and biochemical measures, including FGF23. They were randomized to receive sevelamer or calcium acetate for 1 year and the prescription of calcitriol and the calcium concentration in the dialysate were adjusted according to serum calcium, phosphate and PTH and bone biopsy diagnosis. Results: At baseline, bone biopsy showed that 58.3% had low-turnover bone disease, whereas 38.9% had high-turnover bone disease, with no significant differences between them with regard to FGF23. Median baseline FGF23 serum levels were elevated and correlated positively with serum phosphate. After 1 year, serum FGF23 decreased significantly. Repeated measures ANOVA analysis showed that the use of a 3.5-mEq/l calcium concentration in the dialysate, as well as the administration of calcitriol and a calcium-based phosphate binder were associated with higher final serum FGF23 levels. Conclusions: Taken together, our results confirm that the current CKD-MBD therapies have an effect on serum levels of FGF23. Since FGF23 is emerging as a potential treatment target, our findings should be taken into account in the decision on how to manage CKD-MBD therapy. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Direct carotid-cavernous fistula (CCF) is a direct communication between the internal carotid artery (ICA) and the cavernous sinus. Some patients treated with detachable balloons develop pseudoaneurysms or present with a true aneurysm recanalization in the cavernous ICA with poorly known long-term radiological and clinical progression. The objective of the present study was to evaluate the long-term clinical and radiological progression of patients treated with detachable balloons. The present study evaluated 13 patients previously treated for direct CCF by an endovascular approach. The follow-up period ranged between 19 and 128 months. Ophthalmological evaluation demonstrated alterations in eight patients (61.5%). All of these alterations were already present from the moment of the treatment and displayed no signs of progression. Cranial magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) were performed in all patients, and 11 pseudoaneurysms were demonstrated in ten of the 11 patients in whom ICA patency had been preserved. Five patients were submitted for cerebral digital subtraction angiography (DSA) to characterize the pseudoaneurysms previously observed on MRA studies, with no significant differences in morphology, size, aneurismal neck, and number of lesions. Endovascular treatment of direct CCF with detachable balloons has been shown to be a long-term effective and stable therapeutic method. The authors found asymptomatic pseudoaneurysms in 91% of cases where the ICA patency was preserved. MRI and MRA demonstrated an accuracy similar to that of DSA in the diagnosis of pseudoaneurysms of cavernous ICA.
Resumo:
Purpose: To define the role of magnetization transfer imaging (MTI) in detecting subclinical central nervous system (CNS) lesions in primary antiphospholipid syndrome (PAPS). Materials and Methods: Ten non-CNS PAPS patients were compared to 10 CNS PAPS patients and 10 age- and sex-matched controls. All PAPS patients met Sapporo criteria. All Subjects underwent conventional MRI and complementary MTI analysis to compose histograms. CNS viability was determined according to the magnetization transfer ratio (MTR) by mean pixel intensity (MPI) and the mean peak height (MPH). Volumetric cerebral measurements were assessed by brain parenchyma factor (BPF) and total/cerebral volume. Results: MTR histograms analysis revealed that MPI was significantly different among groups (P < 0.0001). Non-CNS PAPS had a higher MPI than CNS PAPS, (30.5 +/- 1.01 vs. 25.1 +/- 3.17 percent unit (pu); P < 0.05) although lower than controls (30.5 +/- 1.01 vs. 31.20 < 0.50 pu; P < 0.05). MPH in non-CNS PAPS (5.57 +/- 0.20% (1/pu)} was similar to controls (5.63 +/- 0.20% (1/pu), P > 0.05) and higher than CNS PAPS (4.71 +/- 0.30% (1/pu), P < 0.05). A higher peak location (PL) was also observed in the CNS PAPS group in comparison with the other groups (P < 0.0001). In addition, a lower BPF was found in non-CNS PAPS compared to controls (0.80 +/- 0.03 vs. 0.84 +/- 0.02 units; P < 0.05) but similar to CNS PAPS (0.80 +/- 0.03 vs. 0.79 +/- 0.05 units; P > 0.05). Conclusion: Our findings suggest that non-CNS PAPS patients have subclinical cerebral damage. The long-term-clinical relevance of MTI analysis in these patients needs to be defined by prospective studies.
Resumo:
Incomplete revascularization is associated with worse long-term outcomes. Autologous bone marrow cells (BMC) have recently been tested in patients with severe coronary artery disease. We tested the hypothesis that intramyocardial injection of autologous BMC increases myocardial perfusion in patients undergoing incomplete coronary artery bypass grafting (CABG). Twenty-one patients (19 men), 59 +/- 7 years old, with limiting angina and multivessel coronary artery disease (CAD), not amenable to complete CABG were enrolled. BMC were obtained prior to surgery, and the lymphomonocytic fraction separated by density gradient centrifugation. During surgery, 5 mL containing 2.1 +/- 1.3 x 10(8) BMC (CD34+ = 0.8 +/- 0.3%) were injected in the ischemic non-revascularized myocardium. Myocardial perfusion was assessed by magnetic resonance imaging (MRI) at baseline and 1 month after surgery. The increase in myocardial perfusion was compared between patients with < 50% (group A, n = 11) with that of patients with > 50% (group B, n = 10) of target vessels (stenosis a parts per thousand yenaEuro parts per thousand 70%) successfully bypassed. Injected myocardial segments included the inferior (n = 12), anterior (n = 7), and lateral (n = 2) walls. The number of treated vessels (2.3 +/- 0.8) was significantly smaller than the number of target vessels (4.2 +/- 1.0; P < 0.0001). One month after surgery, cardiac MRI showed a similar reduction (%) in the ischemic score of patients in group A (72.5 +/- 3.2), compared to patients in group B (78.1 +/- 3.2; P = .80). Intramyocardial injection of autologous BMC may help increase myocardial perfusion in patients undergoing incomplete CABG, even in those with fewer target vessels successfully treated. This strategy may be an adjunctive therapy for patients suffering from a more advanced (diffuse) CAD not amenable for complete direct revascularization.
Resumo:
In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, Endorem (TM), based on dextrancoated Fe(3)O(4) nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g=2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 +/- 0.6) min measured by EPR and (12.6 +/- 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Previous magnetic resonance imaging (MRI) studies described consistent age-related gray matter (GM) reductions in the fronto-parietal neocortex, insula and cerebellum in elderly subjects, but not as frequently in limbic/paralimbic structures. However, it is unclear whether such features are already present during earlier stages of adulthood, and if age-related GM changes may follow non-linear patterns at such age range. This voxel-based morphometry study investigated the relationship between GM volumes and age specifically during non-elderly life (18-50 years) in 89 healthy individuals (48 males and 41 females). Voxelwise analyses showed significant (p < 0.05, corrected) negative correlations in the right prefrontal cortex and left cerebellum, and positive correlations (indicating lack of GM loss) in the medial temporal region, cingulate gyrus, insula and temporal neocortex. Analyses using ROI masks showed that age-related dorsolateral prefrontal volume decrements followed non-linear patterns, and were less prominent in females compared to males at this age range. These findings further support for the notion of a heterogeneous and asynchronous pattern of age-related brain morphometric changes, with region-specific non-linear features. (C) 2009 Elsevier Inc. All rights reserved.
Wavelet correlation between subjects: A time-scale data driven analysis for brain mapping using fMRI
Resumo:
Functional magnetic resonance imaging (fMRI) based on BOLD signal has been used to indirectly measure the local neural activity induced by cognitive tasks or stimulation. Most fMRI data analysis is carried out using the general linear model (GLM), a statistical approach which predicts the changes in the observed BOLD response based on an expected hemodynamic response function (HRF). In cases when the task is cognitively complex or in cases of diseases, variations in shape and/or delay may reduce the reliability of results. A novel exploratory method using fMRI data, which attempts to discriminate between neurophysiological signals induced by the stimulation protocol from artifacts or other confounding factors, is introduced in this paper. This new method is based on the fusion between correlation analysis and the discrete wavelet transform, to identify similarities in the time course of the BOLD signal in a group of volunteers. We illustrate the usefulness of this approach by analyzing fMRI data from normal subjects presented with standardized human face pictures expressing different degrees of sadness. The results show that the proposed wavelet correlation analysis has greater statistical power than conventional GLM or time domain intersubject correlation analysis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
Previous functional magnetic resonance imaging (fMRI) studies examined neural activity responses to emotive stimuli in healthy individuals after acute/subacute administration of antidepressants. We now report the effects of repeated use of the antidepressant clomipramine on fMRI data acquired during presentation of emotion-provoking and neutral stimuli on healthy volunteers. A total of 12 volunteers were evaluated with fMRI after receiving low doses of clomipramine for 4 weeks and again after 4 weeks of washout. Fear-, happiness-, anger-provoking and neutral pictures from the International Affective Picture System (IAPS) were used. Data analysis was performed with statistical parametric mapping (P < 0.05). Paired t-test comparisons for each condition between medicated and unmedicated states showed, to negative valence paradigms, decrease in brain activity in the amygdala when participants were medicated. We also demonstrated, across both positive and negative valence paradigms, consistent decreases in brain activity in the medicated state in the anterior cingulate gyrus and insula. This is the first report of modulatory effects of repeated antidepressant use on the central representation of somatic states in response to emotions of both negative and positive valences in healthy individuals. Also, our results corroborate findings of antidepressant-induced temporolimbic activity changes to emotion-provoking stimuli obtained in studies of subjects treated acutely with such agents.
Resumo:
The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.
Resumo:
Wernicke`s encephalopathy (WE) is a serious neurological disorder secondary to thiamine deficiency. Improved recognition by radiologists and allied health providers of the different clinical settings and imaging findings associated with this emergency can optimise the management of this condition and help prevent its severe consequences. The aim of this study is to illustrate the broad clinicoradiological spectrum of non-alcoholic WE, while emphasising atypical MRI findings.
Resumo:
Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) aims to disentangle the description of brain processes by exploiting the advantages of each technique. Most studies in this field focus on exploring the relationships between fMRI signals and the power spectrum at some specific frequency bands (alpha, beta, etc.). On the other hand, brain mapping of EEG signals (e.g., interictal spikes in epileptic patients) usually assumes an haemodynamic response function for a parametric analysis applying the GLM, as a rough approximation. The integration of the information provided by the high spatial resolution of MR images and the high temporal resolution of EEG may be improved by referencing them by transfer functions, which allows the identification of neural driven areas without strong assumptions about haemodynamic response shapes or brain haemodynamic`s homogeneity. The difference on sampling rate is the first obstacle for a full integration of EEG and fMRI information. Moreover, a parametric specification of a function representing the commonalities of both signals is not established. In this study, we introduce a new data-driven method for estimating the transfer function from EEG signal to fMRI signal at EEG sampling rate. This approach avoids EEG subsampling to fMRI time resolution and naturally provides a test for EEG predictive power over BOLD signal fluctuations, in a well-established statistical framework. We illustrate this concept in resting state (eyes closed) and visual simultaneous fMRI-EEG experiments. The results point out that it is possible to predict the BOLD fluctuations in occipital cortex by using EEG measurements. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The present work is a report of the characterization of superparamagnetic iron oxide nanoparticles coated with silicone used as a contrast agent in magnetic resonance imaging of the gastrointestinal tract. The hydrodynamic size of the contrast agent is 281.2 rim, where it was determined by transmission electron microscopy and a Fe(3)O(4) crystalline structure was identified by X-ray diffraction, also confirmed by Mossbauer Spectroscopy. The blocking temperature of 190 K was determined from magnetic measurements based on the Zero Field Cooled and Field Cooled methods. The hysteresis loops were measured at different temperatures below and above the blocking temperature. Ferromagnetic resonance analysis indicated the superparamagnetic nature of the nanoparticles and a strong temperature dependence of the peak-to-peak linewidth Delta H(pp), giromagnetic factor g, number of spins N(S) and relaxation time T(2) were observed. This behavior can be attributed to an increase in the superexchange interaction.
Resumo:
OBJECTIVE To examine cortical thickness and volumetric changes in the cortex of patients with polymicrogyria, using an automated image analysis algorithm. METHODS Cortical thickness of patients with polymicrogyria was measured using magnetic resonance imaging (MRI) cortical surface-based analysis and compared with age-and sex-matched healthy subjects. We studied 3 patients with disorder of cortical development (DCD), classified as polymicrogyria, and 15 controls. Two experienced neuroradiologists performed a conventional visual assessment of the MRIs. The same data were analyzed using an automated algorithm for tissue segmentation and classification. Group and individual average maps of cortical thickness differences were produced by cortical surface-based statistical analysis. RESULTS Patients with polymicrogyria showed increased thickness of the cortex in the same areas identified as abnormal by radiologists. We also identified a reduction in the volume and thickness of cortex within additional areas of apparently normal cortex relative to controls. CONCLUSIONS Our findings indicate that there may be regions of reduced cortical thickness, which appear normal from radiological analysis, in the cortex of patients with polymicrogyria. This finding suggests that alterations in neuronal migration may have an impact in the cortical formation of the cortical areas that are visually normal. These areas are associated or occur concurrently with polymicrogyria.
Resumo:
Here, we examine morphological changes in cortical thickness of patients with Alzheimer`s disease (AD) using image analysis algorithms for brain structure segmentation and study automatic classification of AD patients using cortical and volumetric data. Cortical thickness of AD patients (n = 14) was measured using MRI cortical surface-based analysis and compared with healthy subjects (n = 20). Data was analyzed using an automated algorithm for tissue segmentation and classification. A Support Vector Machine (SVM) was applied over the volumetric measurements of subcortical and cortical structures to separate AD patients from controls. The group analysis showed cortical thickness reduction in the superior temporal lobe, parahippocampal gyrus, and enthorhinal cortex in both hemispheres. We also found cortical thinning in the isthmus of cingulate gyrus and middle temporal gyrus at the right hemisphere, as well as a reduction of the cortical mantle in areas previously shown to be associated with AD. We also confirmed that automatic classification algorithms (SVM) could be helpful to distinguish AD patients from healthy controls. Moreover, the same areas implicated in the pathogenesis of AD were the main parameters driving the classification algorithm. While the patient sample used in this study was relatively small, we expect that using a database of regional volumes derived from MRI scans of a large number of subjects will increase the SVM power of AD patient identification.