903 resultados para UKLTRASHORT PULSES
Resumo:
The paper briefly reviews the major forms of optical bistability in active optical devices compatible for use in gigabit optical communication systems, and reports an entirely new optical bistability for the first time. Unlike previous devices, the two bistable states of the optical device are each a series of picosecond optical pulses at 1 GHz or greater repetition rates, and are distinguished by a half period temporal shift between their temporal positions in relation to a clock pulse. The bistable device is based on a gain switched semiconductor laser. Theoretical studies suggest 100-ps switching speeds might be achieved, and experimental results are reported indicating optically triggered switching times of 500 ps. © 1987, American Medical Association. All rights reserved.
Resumo:
Results are given for bistable effects in closely coupled twin stripe lasers. These devices use controlled adjustment of asymmetric transverse optical gain to obtain bistability. Various bistable effects have been observed. Initially the authors reported a large light/current hysteresis loop obtained as the drive current to the laser was raised and lowered. Information concerning the bistable mechanisms was then obtained by applying small current pulses into each stripe. It was thus found that bistability was involved with the switching from one stable laser waveguiding mechanism to another. More recently the experimental measurement system has been much improved. Through the use of computer control of motorised micromovements and computer controlled data management, time resolved near and far field, and charge carrier concentration distribution measurements have been more accurately carried out. The paper will outline briefly this system, and report on how it has helped to reveal new mechanisms of bistability in twin stripe lasers.
Resumo:
A novel monolithically integrated Michelson interferometer using intersecting twin-contact semiconductor optical amplifiers is proposed and implemented whereby the two arms are gain imbalanced to give enhanced noise suppression. Experimental OSNR improvements of 8.4 dB for pulses with durations 8 ps and by default ER of 14 dB are demonstrated for low driving currents of between 25 and 30 mA. This is believed to be the smallest Michelson interferometer to date.
Resumo:
A detailed study of the design issues relevant to long-wavelength monolithic mode-locked lasers is presented. Following a detailed review of the field, we have devised a validated travelling wave model to explore the limits of mode-locking in monolithic laser diodes, not only in terms of pulse duration and repetition rate, but also in terms of stability. It is shown that fast absorber recovery is crucial for short pulse width, that the ratio of gain to absorption saturation is key in accessing ultrashort pulses and that low alpha factors give only modest benefit. Finally, optimized contact layouts are shown to greatly enhance pulse stability and the overall operational success. The design rules show high levels of consistency with published experimental data.
Resumo:
The generation of 22 ps pulses with peak powers of 0.74 W by a gain-switched InGaN violet laser diode is reported. Significant pulse width dependence on repetition rate is observed. © 2011 OSA.
Resumo:
A novel scheme using a 10 GHz gain-switched DFB laser with simultaneous pulse width and jitter compression allows generation of 380fs pulses with both system limited 150fs jitter and 30 dB extinction ratio. ©1999 Optical Society of America.
Resumo:
The assessment of emerging risks in the aquatic environment is a major concern and focus of environmental science (Daughton and Ternes, 1999). One significant class of chemicals that has received relatively little attention until recently are the human use pharmaceuticals. In 2004, an estimated 2.6 billion prescriptions were written for the top 300 pharmaceuticals in the U.S. (RxList, 2005). Mellon et al. (2001) estimated that 1.4 million kg of antimicrobials are used in human medicine every year. The use of pharmaceuticals is also estimated to be on par with agrochemicals (Daughton and Ternes, 1999). Unlike agrochemicals (e.g., pesticides) which tend to be delivered to the environment in seasonal pulses, pharmaceuticals are continuously released through the use/excretion and disposal of these chemicals, which may produce the same exposure potential as truly persistent pollutants. Human use pharmaceuticals can enter the aquatic environment through a number of pathways, although the main one is thought to be via ingestion and subsequent excretion by humans (Thomas and Hilton, 2004). Unused pharmaceuticals are typically flushed down the drain or wind up in landfills (Jones et al. 2001).
Resumo:
We report the first measurement of two-photon absorption (TPA) and self-phase modulation in an InGaAsP/InP multi-quantum-well waveguide. The TPA coefficient, β2, was found to be 60±10 cm/GW at 1.55 μm. Despite operating at 200 nm from the band edge, self-phase modulation as high as 8±2 rad was observed for 30-ps optical pulses at 3.8-W peak input power. A theoretical calculation indicates that this enhanced phase modulation is primarily due to bandfilling in the quantum wells and the free-carrier plasma effect.
Resumo:
For the first time, lasers have been used to induce a fast all-optical nonresonant nonlinearity at wavelengths well beyond the band edge in a GaAs/GaAlAs multiquantum well waveguide. Using a Q-switched diode laser, which gave optical pulses of 3.5 ps duration and 7 W peak power, an intensity-dependent transmission was recorded that was consistent with the presence of two photon absorption in the waveguide. The measured two photon absorption coefficient was 11 ± 2cm/GW.
Resumo:
We have investigated a resonant refractive nonlinearity in a semiconductor waveguide by measuring intensity dependent phase shifts and bias-dependent recovery times. The measurements were performed on an optimized 750-μm-long AR coated buried heterostructure MQW p-i-n waveguide with a bandedge at 1.48 μm. Figure 1 shows the experimental arrangement. The mode-locked color center laser was tuned to 50 meV beyond the bandedge and 8 ps pulses with peak incident power up to 57 W were coupled into the waveguide. Some residual bandtail absorption remains at this wavelength and this is sufficient to cause carriers to be photogenerated and these give rise to a refractive nonlinearity, predominantly by plasma and bandfilling effects. A Fabry-Perot interferometer is used to measure the spectrum of the light which exits the waveguide. The nonlinearity within the guide causes self phase modulation (SPM) of the light and a study of the spectrum allows information to be recovered on the magnitude and recovery time of the nonlinear phase shift with a reasonable degree of accuracy. SPM spectra were recorded for a variety of pulse energies coupled into he unbiased waveguide. Figure 2 shows the resultant phase shift measured from the SPM spectra as a function of pulse energy. The relationship is a linear one, indicating that no saturation of the nonlinearity occurs for coupled pulse energies up to 230 pJ. A π phase shift, the minimum necessary for an all-optical switch, is obtained for a coupled pulse energy of 57 pJ while the maximum phase shift, 4 π, was measured for 230 pJ. The SPM spectra were highly asymmetric with pulse energy shifted to higher frequencies. Such spectra are characteristic of a slow, negative nonlinearity. This relatively slow speed is expected for the unbiased guide as the recovery time will be of the order of the recombination time of the photogenerated electrons, about 1 ns for InGaAsP material. In order to reduce the recovery time of the nonlinearity, it is necessary to remove the photogenerated carriers from the waveguide by a process other than recombination. One such technique is to apply a reverse bias to the waveguide in order to sweep the carriers out. Figure 3 shows the effect on the recovery time of the nonlinearity of applying reverse bias to the waveguide for 230 pJ coupled power. The recovery time was reduced from one much longer than the length of the pulse, estimated to be about 1 ns, at zero bias to 18 ± 3 ps for a bias voltage greater than -4 V. This compares with a value of 24 ps obtained in a bulk waveguide.
Resumo:
This paper describes a novel technique whereby a mixture of cross-phase and cross-gain modulation effects in an SOA causes polarization rotation of a cw probe beam in the presence of a signal pulse, enabling the transmission of the probe through a polarizer to be controlled. The benefits of this approach are: 1) Very high extinction ratios present in the wavelength converted signal (>30 achieved); 2) A non-inverted wavelength converted signal, which is advantageous for chirp-compensation;2 3) A simple and stable experimental set-up, 4) Converted pulses which can be shaped to be faster than the input pulses.
Resumo:
Monolithic multisection mode-locked semiconductor lasers with an integrated distributed Bragg reflector (DBR) have recently been demonstrated to generate stable picosecond pulses at high repetition rates suitable for optical communication systems. However, there has been very little theoretical work on understanding the physical mechanisms of the device and on optimisation of the absorber modulator design. This article presents numerical modeling of the loss modulated mode-locking process in these lasers. The model predicts most aspects experimentally observed within this type of device, and the results show the output waveform, optical spectrum, instantaneous frequency chirp, and stable operating range.
Resumo:
Jitter measurements were performed on a monolithically integrated active/passive cavity multiple quantum well laser, actively mode-locked at 10 GHz via modulation of an absorber section. Sub-10 ps pulses were produced upon optimization of the drive conditions to the gain, distributed Bragg reflector, and absorber sections. A model was also developed using travelling wave rate equations. Simulation results suggest that spontaneous emission is the dominant cause of jitter, with carrier dynamics having a time constant of the order of 1 ns.
Resumo:
The performance of 40 Gbit/s optical time-division multiplexed (OTDM) communication systems can be severely limited when the extinction ratio of the optical pulses is low. This is a consequence of the coherent interference noise between individual OTDM channels. When taken alone, the multiple quantum well-distributed feedback laser+dispersion compensating fiber source exhibits a relatively poor extinction ratio which impairs its potential for use in a 40 Gbit/s OTDM system. However, with the addition of an electroabsorption modulator to suppress the pulse pedestals to better than 30 dB extinction, coherent interference noise is reduced, the bit-error-rate performance is greatly improved, and the source shows good potential for 40 Gbit/s OTDM communication.
Resumo:
Multiwavelength pulses were generated using a monolithically integrated device. The device used is an integrated InGaAs/InGaAsP/InP multi-wavelength laser fabricated by selective area regrowth. The device self pulsated on all of the four wavelength channels. 48 ps pulses were obtained which were measured by a 50GHz oscilloscope and 32GHz photodiode which was not bandwidth limited. Simultaneous multi-wavelength pulse generation was also achieved.