957 resultados para Tucídides, ca. 460-ca. 400 a. C.
Resumo:
We investigated the influences of temperature, salinity and pH on the calcium isotope as well as trace and minor element (uranium, strontium, magnesium) to Ca ratios on calcium carbonate cysts of the calcareous dinoflagellate species Thoracosphaera heimii grown in laboratory cultures. The natural habitat of this species is the photic zone (preferentially at the chlorophyll maximum depth) of temperate to tropical oceans, and it is abundant in deep-sea sediments over the entire Cenozoic. In our experiments, temperatures ranged from 12 to 30 °C, salinity from 36.5 to 38.8 and pH from 7.9 to 8.4. The delta44/40Ca of T. heimii cysts resembles that of other marine calcifiers, including coccolithophores, foraminifers and corals. However, its temperature sensitivity is considerably smaller and statistically insignificant, and T. heimii might serve as a recorder of changes in seawater delta44/40Ca over geologic time. The Sr/Ca ratios of T. heimii cysts show a pronounced temperature sensitivity (0.016 mmol/mol °C**-1) and have the potential to serve as a palaeo-sea surface temperature proxy. No clear temperature- and pH-dependences were observed for Mg/Ca. U/Ca seems to be influenced by temperature and pH, but the correlations change sign at 23 °C and pH 8.2, respectively.
Resumo:
Earth's climate underwent a fundamental change between 1250 and 700 thousand years ago, the Mid-Pleistocene Transition (MPT), when the dominant periodicity of climate cycles changed from 41,000 to 100,000 years in the absence of significant change in orbital forcing. Over this time, an increase occurred in the amplitude of change of deep ocean foraminiferal oxygen isotopic ratios, traditionally interpreted as defining the main rhythm of ice ages although containing large effects of changes in deep-ocean temperature. We have separated the effects of decreasing temperature and increasing global ice volume on oxygen isotope ratios. Our results suggest that the MPT was initiated by an abrupt increase in Antarctic ice volume at 900 ka. We see no evidence of a pattern of gradual cooling but near-freezing temperatures occur at every glacial maximum.
Resumo:
In the largest global cooling event of the Cenozoic Era, between 33.8 and 33.5 Myr ago, warm, high-CO2 conditions gave way to the variable 'icehouse' climates that prevail today. Despite intense study, the history of cooling versus ice-sheet growth and sea-level fall reconstructed from oxygen isotope values in marine sediments at the transition has not been resolved. Here, we analyse oxygen isotopes and Mg/Ca ratios of benthic foraminifera, and integrate the results with the stratigraphic record of sea-level change across the Eocene-Oligocene transition from a continental-shelf site at Saint Stephens Quarry, Alabama. Comparisons with deep-sea (Sites 522 (South Atlantic) and 1218 (Pacific)) d18O and Mg/Ca records enable us to reconstruct temperature, ice-volume and sea-level changes across the climate transition. Our records show that the transition occurred in at least three distinct steps, with an increasing influence of ice volume on the oxygen isotope record as the transition progressed. By the early Oligocene, ice sheets were ~25% larger than present. This growth was associated with a relative sea-level decrease of approximately 105 m, which equates to a 67 m eustatic fall.
Resumo:
The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3-4 °C. Yet, current reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this time. This stability has been used to suggest that tropical sea-surface temperatures are controlled by some sort of thermostat-like regulation. Here we reconstruct sea surface temperatures in the South China Sea, Caribbean Sea and western equatorial Pacific Ocean for the past five million years, using a combination of the Mg/Ca, TEXH86-and Uk'37 surface temperature proxies. Our data indicate that during the period of Pliocene warmth from about 5 to 2.6 million years ago, the western Pacific and western Atlantic warm pools were about 2 °C warmer than today. We suggest that the apparent lack of warming seen in the previous reconstructions was an artefact of low seawater Mg/Ca ratios in the Pliocene oceans. Taking this bias into account, our data indicate that tropical sea surface temperatures did change in conjunction with global mean temperatures. We therefore conclude that the temperature of the warm pools of the equatorial oceans during the Pliocene was not limited by a thermostat-like mechanism.
Resumo:
Accelerator mass spectrometry (AMS) radiocarbon dating of ostracod and gastropod shells from the southwestern Black Sea cores combined with tephrochronology provides the basis for studying reservoir age changes in the lateglacial Black Sea. The comparison of our data with records from the northwestern Black Sea shows that an apparent reservoir age of ~1450 14C yr found in the glacial is characteristic of a homogenized water column. This apparent reservoir age is most likely due to the hardwater effect. Though data indicate that a reservoir age of ~1450 14C yr may have persisted until the Bølling-Allerød warm period, a comparison with the GISP2 ice-core record suggests a gradual reduction of the reservoir age to ~1000 14C yr, which might have been caused by dilution effects of inflowing meltwater. During the Bølling-Allerød warm period, soil development and increased vegetation cover in the catchment area of the Black Sea could have hampered erosion of carbonate bedrock, and hence diminished contamination by "old" carbon brought to the Black Sea basin by rivers. A further reduction of the reservoir age most probably occurred contemporary to the precipitation of inorganic carbonates triggered by increased phytoplankton activity, and was confined to the upper water column. Intensified deep water formation subsequently enhanced the mixing/convection and renewal of intermediate water. During the Younger Dryas, the age of the upper water column was close to 0 yr, while the intermediate water was ~900 14C yr older. The first inflow of saline Mediterranean water, at ~8300 14C yr BP, shifted the surface water age towards the recent value of ~400 14C yr.
Resumo:
A comparison of cadmium/calcium (Cd/Ca) records of benthic foraminifera from a deep Cape Basin and a deep eastern equatorial Pacific core suggests that over the past 400,000 years, the nutrient concentration of Circumpolar Deep Water (CPDW) has always been lower than that of the deep Pacific. The data further suggest that at the 100,000- and 23,000-year orbital periods, the contribution of North Atlantic Deep Water to CPDW is at a maximum during periods of ice growth and at a minimum during periods of ice decay. These results are not in agreement with results based on carbon isotope records of benthic foraminifera, which suggest intervals of CPDW nutrient enrichment relative to the deep Pacific and an approximately in-phase relationship between CPDW nutrient concentration and ice volume. Resolution of the apparent conflict between delta13C and Cd/Ca data may provide important constraints on past deep-ocean circulation and nutrient variability.
Resumo:
We present modern B/Ca core-top calibrations for the epifaunal benthic foraminifer Nuttallides umbonifera and the infaunal Oridorsalis umbonatus to test whether B/Ca values in these species can be used for the reconstruction of paleo-D[[CO3]2-]. O. umbonatus originated in the Late Cretaceous and remains extant, whereas N. umbonifera originated in the Eocene and is the closest extant relative to Nuttallides truempyi, which ranges from the Late Cretaceous through the Eocene. We measured B/Ca in both species in 35 Holocene sediment samples from the Atlantic, Pacific and Southern Oceans. B/Ca values in epifaunal N. umbonifera (~ 85-175 µmol/mol) are consistently lower than values reported for epifaunal Cibicidoides (Cibicides) wuellerstorfi (130-250 µmol/mol), though the sensitivity of D[[CO3]2-] on B/Ca in N. umbonifera (1.23 ± 0.15) is similar to that in C. wuellerstorfi (1.14 ± 0.048). In addition, we show that B/Ca values of paired N. umbonifera and its extinct ancestor, N. truempyi, from Eocene cores are indistinguishable within error. In contrast, both the B/Ca (35-85 µmol/mol) and sensitivity to D[[CO3]2-] (0.29 ± 0.20) of core-top O. umbonatus are considerably lower (as in other infaunal species), and this offset extends into the Paleocene. Thus the B/Ca of N. umbonifera and its ancestor can be used to reconstruct bottom water D[[CO3]2?], whereas O. umbonatus B/Ca appears to be buffered by porewater [[CO3]2-] and suited for constraining long-term drift in seawater B/Ca.
Resumo:
An extensive, high-resolution, sedimentological-geochemical survey was done using geo-acoustics, XRF-core scans, ICP-AES, AMS 14C-dating and grain size analyses of sediments in 11 cores from the Gulf of Taranto, the southern Adriatic Sea, and the central Ionian Sea spanning the last 16 cal. ka BP. Comparable results were obtained for cores from the Gallipoli Shelf (eastern Gulf of Taranto), and the southern Adriatic Sea suggesting that the dominant provenance of Gallipoli Shelf sediments is from the western Adriatic mud belt. The 210Pb and 14C-dated high-accumulation-rate sediments permit a detailed reconstruction of climate variability over the last 16 cal. ka BP. Although, the Glacial-Interglacial transition is generally dry and stable these conditions are interrupted by two phases of increased detrital input during the Bølling-Allerød and the late Younger Dryas. The event during the Younger Dryas period is characterized by increased sediment inputs from southern Italian sources. This suggests that run-off was higher in southern- compared to northern Italy. At approximately ~ 7 cal. ka BP, increased detrital input from the Adriatic mud belt, related to sea level rise and the onset of deep water formation in the Adriatic Sea, is observed and is coincident with the end of sapropel S1 formation in the southern Adriatic Sea. During the mid-to-late Holocene we observed millennial-scale events of increased detrital input, e.g. during the Roman Humid Period, and of decreased detrital input, e.g., Medieval Warm Period. These dry/wet spells are consistent with variability in the North Atlantic Oscillation (NAO). A negative state of the NAO and thus a more advanced penetration of the westerlies into the central Mediterranean, that result in wet conditions in the research area concord with events of high detrital input e.g., during the Roman Humid Period. In contrast, a positive state of the NAO, resulting in dry conditions in the Mediterranean, dominated during events of rapid climate change such as the Medieval Warm Period and the Bronze Age.
Resumo:
Explanations for the demise of the Classic Maya civilization on the Yucatán Peninsula during the Terminal Classic Period (TCP; CE 750-1050) are controversial. Multiyear droughts are one likely cause, but the role of the Caribbean Sea, the dominant moisture source for Mesoamerica, remains largely unknown. Here we present bimonthly resolved snapshots of reconstructed sea surface temperature (SST) and salinity (SSS) variability in the southern Caribbean from precisely dated fossil corals. Our fossil coral results from Bonaire indicate strong interannual to decadal SST and SSS variability in the southern Caribbean Sea during the TCP with multiyear extremes of high SSS and high SST that coincide with droughts on the Yucatán Peninsula. The results are best explained by changed Caribbean SST gradients affecting the Caribbean low-level atmospheric jet with consequences for Mesoamerican precipitation, possibly linked to changes in Atlantic Meridional Overturning Circulation strength. Our findings provide a new perspective on the anomalous hydrological changes on the Yucatán Peninsula during the TCP that complement the often-suggested southward displacement of the Intertropical Convergence Zone. We advocate for a strong role of ocean-atmosphere interactions in the Caribbean Sea related to the multiyear variations in Caribbean Sea surface conditions as an important driver of the spatially complex pattern of hydrological anomalies during the TCP.
Resumo:
This study presents new evidence of when and how the Western Pacific Warm Pool (WPWP) was established in its present form. We analyzed planktic foraminifera, oxygen isotopes, and Mg/Ca ratios in upper Miocene through Pleistocene sediments collected at Deep Sea Drilling Program (DSDP) Site 292. These data were then compared with those reported from Ocean Drilling Program (ODP) Site 806. Both drilling sites are located in the western Pacific Ocean. DSDP Site 292 is located in the northern margin of the modern WPWP and ODP Site 806 near the center of the WPWP. Three stages of development in surface-water conditions are identified in the region using planktic foraminferal data. During the initial stage, from 8.5 to 4.4 Ma, Site 806 was overlain by warm surface water but Site 292 was not, as indicated by the differences in faunal compositions and sea-surface temperature (SST) between the two sites. In addition, the vertical thermal gradient at Site 292 was weak during this period, as indicated by the small differences in the delta18O values between Globigerinoides sacculifer and Pulleniatina spp. During stage two, from 4.4 to 3.6 Ma, the SST at Site 292 rapidly increased to 27 °C, but the vertical thermal gradient had not yet be strengthened, as shown by Mg/Ca ratios and the presence of both mixed-layer dwellers and thermocline dwellers. Finally, a warm mixed layer with a high SST ca. 28 °C and a strong vertical thermal gradient were established at Site 292 by 3.6 Ma. This event is marked by the dominance of mixed-layer dwellers, a high and stable SST, and a larger differences in the delta18O values between G. sacculifer and Pulleniatina spp. Thus, evidence of surface-water evolution in the western Pacific suggests that Site 292 came under the influence of the WPWP at 3.6 Ma. The northward expansion of the WPWP from 4.4 to 3.6 Ma and the establishment of the modern WPWP by 3.6 Ma appear to be closely related to the closure of the Indonesian and Central American seaways.