922 resultados para Tree planting
Resumo:
The steady state kinetic mechanism of the H(2)O(2)-supported oxidation of different organic substrates by peroxidase from leaves of Chamaerops excelsa palm trees (CEP) has been investigated. An analysis of the initial rates vs. H(2)O(2) and reducing substrate concentrations is consistent with a substrate-inhibited Ping-Pong Bi Bi reaction mechanism. The phenomenological approach expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis-Menten equation and leads to an interpretation of the effects in terms of the kinetic parameters K(m)(H2O2)center dot K(m)(AH2)center dot k(cat)center dot K(SI)(AH2) and of the microscopic rate constants k(1) and k(3) of the shared three-step catalytic cycle of peroxidases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A new eriophyoid mite genus and species, Gymnaceria cupuassu n. sp. et n. gen. (Acari: Eriophyidae: Eriophyinae: Aceriini), is described from young fruits and other plant parts of the cupuacu tree, Theobroma grandiflorum (Willd. Ex Spreng.) K. Schum. (Sterculiaceae), from the State of Bahia, northeastern Brazil. No visible damage symptoms were observed.
Resumo:
The Brazilian Atlantic forest is considered one of the world's biodiversity conservation hotspot. Today there is less than ten percent remaining. Therefore it is necessary to restore these ecosystems. There are many ways of achieving restoration's main goals, but there is a lack of ecological studies that analyzes tree species richness as a variable. Thus, this study's goal is to investigate if there is a difference between a forest restoration in a gradient of tree species richness that varies from 20, 60 to 120 species, by using the litterfall as an indicator. Every month, for one year the forest litter was collected from litter traps that were previously installed. Results revealed that stands produced litterfall by the increasing gradient of species was of 5,370, 5,909 and 6,432 kg ha(-1) yr(-1). The statistical analyses revealed no significant difference among them. Therefore this six-year-old forest restoration plantation shows no difference on the litter production by the tree species richness.
Resumo:
The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.
Resumo:
This study aimed to map phytophysiognomies of an area of Ombrophilous Dense Forest at Parque Estadual da Serra do Mar and characterize their floristic composition. Photointerpretation of aerial photographs in scale of 1:35,000 was realized in association with field work. Thirteen physiognomies were mapped and they were classified as Montane Ombrophilous Dense Forest, Alluvial Ombrophilous Dense Forest or Secondary System. Three physiognomies identified at Casa de Pedra streamlet's basin were studied with more details. Riparian forest (RF), valley forest (VF), and hill forest (HF) presented some floristic distinction, as confirmed by Detrended Correspondence Analysis (DCA) and Indicator Species Analysis (ISA) conducted here. Anthropic or natural disturbances and heterogeneity of environmental conditions may be the causes of physiognomic variation in the vegetation of the region. The results presented here may be useful to decisions related to management and conservation of Núcleo Santa Virgínia forests, in general.
Resumo:
[EN] In this paper, we present a vascular tree model made with synthetic materials and which allows us to obtain images to make a 3D reconstruction.We have used PVC tubes of several diameters and lengths that will let us evaluate the accuracy of our 3D reconstruction. In order to calibrate the camera we have used a corner detector. Also we have used Optical Flow techniques to follow the points through the images going and going back. We describe two general techniques to extract a sequence of corresponding points from multiple views of an object. The resulting sequence of points will be used later to reconstruct a set of 3D points representing the object surfaces on the scene. We have made the 3D reconstruction choosing by chance a couple of images and we have calculated the projection error. After several repetitions, we have found the best 3D location for the point.
Resumo:
The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesn’t improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a “singular” experimental orchard named “Asymmetric orchard”, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. “Asymmetric” training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 – 1200 μmolm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal ΔpH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.
Resumo:
Machine learning comprises a series of techniques for automatic extraction of meaningful information from large collections of noisy data. In many real world applications, data is naturally represented in structured form. Since traditional methods in machine learning deal with vectorial information, they require an a priori form of preprocessing. Among all the learning techniques for dealing with structured data, kernel methods are recognized to have a strong theoretical background and to be effective approaches. They do not require an explicit vectorial representation of the data in terms of features, but rely on a measure of similarity between any pair of objects of a domain, the kernel function. Designing fast and good kernel functions is a challenging problem. In the case of tree structured data two issues become relevant: kernel for trees should not be sparse and should be fast to compute. The sparsity problem arises when, given a dataset and a kernel function, most structures of the dataset are completely dissimilar to one another. In those cases the classifier has too few information for making correct predictions on unseen data. In fact, it tends to produce a discriminating function behaving as the nearest neighbour rule. Sparsity is likely to arise for some standard tree kernel functions, such as the subtree and subset tree kernel, when they are applied to datasets with node labels belonging to a large domain. A second drawback of using tree kernels is the time complexity required both in learning and classification phases. Such a complexity can sometimes prevents the kernel application in scenarios involving large amount of data. This thesis proposes three contributions for resolving the above issues of kernel for trees. A first contribution aims at creating kernel functions which adapt to the statistical properties of the dataset, thus reducing its sparsity with respect to traditional tree kernel functions. Specifically, we propose to encode the input trees by an algorithm able to project the data onto a lower dimensional space with the property that similar structures are mapped similarly. By building kernel functions on the lower dimensional representation, we are able to perform inexact matchings between different inputs in the original space. A second contribution is the proposal of a novel kernel function based on the convolution kernel framework. Convolution kernel measures the similarity of two objects in terms of the similarities of their subparts. Most convolution kernels are based on counting the number of shared substructures, partially discarding information about their position in the original structure. The kernel function we propose is, instead, especially focused on this aspect. A third contribution is devoted at reducing the computational burden related to the calculation of a kernel function between a tree and a forest of trees, which is a typical operation in the classification phase and, for some algorithms, also in the learning phase. We propose a general methodology applicable to convolution kernels. Moreover, we show an instantiation of our technique when kernels such as the subtree and subset tree kernels are employed. In those cases, Direct Acyclic Graphs can be used to compactly represent shared substructures in different trees, thus reducing the computational burden and storage requirements.
Resumo:
Anthropogene Fragmentierung und Störung von Wäldern beeinflussen ökologische Prozesse. Darüber hinaus werden genetische Drift und Inzucht verstärkt und die Fitness von Populationen beeinträchtigt. Um die Einflüsse von Fragmentierung und Störung auf die Biodiversität und Prozesse in tropischen Wäldern zu ermitteln, habe ich im „Kakamega Forest“, West-Kenia, die Baumart Prunus africana genauer untersucht. Dabei lag der Fokus auf (i) der Frugivorengemeinschaft und Samenausbreitung, (ii) der Kleinsäugergemeinschaft im Kontext der Samenprädation und (iii) der genetische Populationsstruktur von Keimlingen und adulten Bäumen. Der Vergleich von Keimlingen mit adulten Bäumen ermöglicht es, Veränderungen im Genfluss zwischen Generationen festzustellen. Die Ergebnisse zeigten, dass im untersuchten Waldgebiet insgesamt 49 frugivore Arten (Affen und Vögel) vorkommen. Dabei lag die Gesamtartenzahl im zusammenhängenden Wald höher als in den isoliert liegenden Fragmenten. An den Früchten von P. africana konnten insgesamt 36 Arten fressend beobachtet werden. Hier jedoch wurden in Fragmenten eine leicht erhöhte Frugivorenzahl sowie marginal signifikant erhöhte Samenausbreitungsraten nachgewiesen. Der Vergleich von stark gestörten mit weniger gestörten Flächen zeigte eine höhere Gesamtartenzahl sowie eine signifikant höhere Frugivorenzahl in P. africana in stark gestörten Flächen. Entsprechend war die Samenausbreitungsrate in stark gestörten Flächen marginal signifikant erhöht. Diese Ergebnisse deuten darauf hin, dass die quantitative Samenausbreitung in fragmentierten und gestörten Flächen etwas erhöht ist und somit eine gewisse Artenredundanz besteht, die den Verlust einzelner Arten ausgleichen könnte. Prunus africana Samen, die auf dem Boden lagen, wurden hauptsächlich von einer Nagerart (Praomys cf. jacksonii) erbeutet. Dabei war in gestörten Waldbereichen eine tendenziell höhere Prädatoraktivität zu beobachten als in weniger gestörten. Zudem waren einzelne Samen im Gegensatz zu Samengruppen in gestörten Flächen signifikant höherem Prädationsdruck ausgesetzt. Diese Ergebnisse zeigen, dass Fragmentierung sowie anthropogene Störungen auf unterschiedliche Prozesse im Lebenszyklus eines tropischen Baumes gegensätzliche Effekte haben können. Eine Extrapolation von einem auf einen anderen Prozess kann somit nicht erfolgen. Die genetische Differenzierung der adulten Baumpopulationen war gering (FST = 0.026). Der Großteil ihrer Variation (~ 97 %) lag innerhalb der Populationen, was intensiven Genfluss in der Vergangenheit widerspiegelt. Die genetische Differenzierung der Keimlinge war etwas erhöht (FST = 0.086) und ~ 91 % ihrer Variation lag innerhalb der Populationen. Im Gegensatz zu den adulten Bäumen konnte ich für Keimlinge ein „Isolation-by-distance“-Muster feststellen. Somit sind erste Hinweise auf begrenzten Genfluss im Keimlingsstadium infolge von Fragmentierung gegeben. Obwohl die Momentaufnahmen im Freiland keine Abnahme in der Frugivorenzahl und Samenausbreitung von P. africana als Folge von Fragmentierung beobachten ließen, weisen die Ergebnisse der genetischen Studie auf einen bereits reduzierten Genaustausch zwischen den Populationen hin. Somit lässt sich feststellen, dass die Faktoren Fragmentierung und Störung genetische Diversität, ökologische Prozesse und Artendiversität in Wäldern jeweils auf unterschiedliche Weise beeinflussen. Um Konsequenzen derartiger Einflüsse folgerichtig abschätzen zu können, sind Studien auf unterschiedlichen Diversitätsebenen unabdingbar.
Resumo:
It was decided to carry out a morphological and molecular characterization of the Italian Alternaria isolatescollected from apple , and evaluate their pathogenicity and subsequently combining the data collected. The strain collection (174 isolates) was constructed by collecting material (received from extension service personnel) between June and August of 2007, 2008, and 2009. A Preliminary bioassays were performed on detached plant materials (fruit and leaf wounded and unwounded), belonging to the Golden cultivar, with two different kind of inoculation (conidial suspension and conidial filtrate). Symptoms were monitored daily and a value of pathogenicity score (P.S.) was assigned on the basis of the diameter of the necrotic area that developed. On the basis of the bioassays, the number of isolates to undergo further molecular analysis was restricted to a representative set of single spore strains (44 strains). Morphological characteristics of the colony and sporulation pattern were determined according to previous systematic work on small-spored Alternaria spp. (Pryor and Michaelides, 2002 and Hong et al., 2006). Reference strains (Alternaria alternata, Alternaria tenuissima, Alternaria arborescens and four Japanese strains of Alternaria alternata mali pathotype), used in the study were kindly provided by Prof. Barry Pryor, who allows a open access to his own fungal collection. Molecular characterization was performed combining and comparing different data sets obtained from distinct molecular approach: 1) investigation of specific loci and 2) fingerprinting based on diverse randomly selected polymorphic sites of the genome. As concern the single locus analysis, it was chosen to sequence the EndoPG partial gene and three anonymous region (OPA1-3, OPA2- and OPa10-2). These markers has revealed a powerful tool in the latter systematic works on small-spored Alternaria spp. In fact, as reported in literature small-spored Alternaria taxonomy is complicated due to the inability to resolve evolutionary relationships among the taxa because of the lack of variability in the markers commonly used in fungi systematic. The three data set together provided the necessary variation to establish the phylogenetic relationships among the Italian isolates of Alternaria spp. On Italian strains these markers showed a variable number of informative sites (ranging from 7 for EndoPg to 85 for OPA1-3) and the parsimony analysis produced different tree topologies all concordant to define A. arborescens as a mophyletic clade. Fingerprinting analysis (nine ISSR primers and eight AFLP primers combination) led to the same result: a monophyleic A. arborescens clade and one clade containing both A. tenuissima and the A. alternata strains. This first attempt to characterize Italian Alternaria species recovered from apple produced concordant results with what was already described in a similar phylogenetic study on pistachio (Pryor and Michaelides, 2002), on walnut and hazelnut (Hong et al., 2006), apple (Kang et al., 2002) and citurus (Peever et al., 2004). Together with these studies, this research demonstrates that the three morphological groups are widely distributed and occupy similar ecological niches. Furthermore, this research suggest that these Alternaria species exhibit a similar infection pattern despite the taxonomic and pathogenic differences. The molecular characterization of the pathogens is a fundamental step to understanding the disease that is spreading in the apple orchards of the north Italy. At the beginning the causal agent was considered as Alteraria alternata (Marshall and Bertagnoll, 2006). Their preliminary studies purposed a pathogenic system related to the synthesis of toxins. Experimental data of our bioassays suggest an analogous hypothesis, considering that symptoms could be induced after inoculating plant material with solely the filtrate from pathogenic strains. Moreover, positive PCR reactions using AM-toxin gene specific primers, designed for identification of apple infecting Alternaria pathovar, led to a hypothesis that a host specific toxin (toxins) were involved. It remains an intriguing challenge to discover or not if the agent of the “Italian disease” is the same of the one previously typified as Alternaria mali, casual agent of the apple blotch disease.
Resumo:
Samenausbreitung und Regeneration von Bäumen sind wichtig für den langfristigen Bestand von Baum- und Frugivorengemeinschaften in tropischen Regenwäldern. Zunehmende Rohdung und Degradation gefährden den Ablauf dieser mutualistischen Prozesse in diesem Ökosystem. Um den Einfluss von kleinräumiger menschlicher Störung auf die Frugivorengemeinschaft und die zentralen Ökosystemprozesse Samenausbreitung und Regeneration zu erforschen, habe ich 1) die Frugivorengemeinschaft und die Samenausbreitungsrate von Celtis durandii (Ulmaceae) und 2) den Zusammenhang zwischen Baumarten mit fleischigen Früchten, Frugivoren und der Etablierung von Keimlingen dieser Baumarten in unterschiedlich stark gestörten Flächen dreier ostafrikanischer tropischer Regenwälder untersucht. Insgesamt konnte ich 40 frugivore Vogel- und Primatenarten in den drei untersuchten Waldgebieten nachweisen. Auf gering gestörten Flächen wurden mehr Frugivore als auf stark gestörten Flächen aufgenommen. Auch die Beobachtungen an C. durandii ergaben mehr frugivore Besucher in Bäumen auf gering gestörten als auf stark gestörten Flächen. Dies führte zu einer marginal signifikant höheren Samenausbreitungsrate auf den gering gestörten Flächen. Diese Ergebnisse waren auf regionaler Ebene in allen drei untersuchten Wäldern konsistent. Dies zeigt, dass kleinräumige Störung einen umfassenderen negativen Einfluss auf Frugivore und ihre Funktion als Samenausbreiter hat als zuvor angenommen. Bei der Vegetationserfassung nahm ich 131 verschiedene Baumarten mit fleischigen Früchten in den drei Regenwäldern auf. Kleinräumige menschliche Störung erhöhte den Artenreichtum dieser Baumarten marginal signifikant, hatte jedoch keinen direkten Einfluss auf die Frugivorendichte und den Artenreichtum von Keimlingen dieser Baumarten. Der Artenreichtum von Baumarten mit fleischigen Früchten zeigte einen marginal signifikant positiven Einfluss auf die Frugivorendichte, allerdings nicht auf die Keimlinge. Allerdings führte die Dichte der Frugivoren zu signifikant erhöhtem Artenreichtum der Keimlinge. Folglich scheint kleinräumige Störung die Keimlingsetablierung indirekt durch erhöhten Baumartenreichtum und erhöhte Frugivorendichte zu beeinflussen. Die Frugivorendichte hatte einen größeren Einfluss auf die Waldregeneration als kleinräumige Störung und Baumartenreichtum. Demnach scheint kleinräumige menschliche Störung sowohl positive als auch negative Effekte auf Samenausbreitung und Regeneration zu haben. Somit sind weitere Studien notwendig, die den Einfluss von kleinräumiger menschlicher Störung auf Mutualismen tropischer Regenwälder aufklären.
Resumo:
In many plant species, the genetic template of early life-stages is formed by animal-mediated pollination and seed dispersal and has profound impact on further recruitment and population dynamics. Understanding the impact of pollination and seed dispersal on genetic patterns is a central issue in plant population biology. In my thesis, I investigated (i) contemporary dispersal and gene flow distances as well as (ii) genetic diversity and spatial genetic structure (SGS) across subsequent recruitment stages in a population of the animal-pollinated and dispersed tree Prunus africana in Kakamega Forest, West Kenya. Using microsatellite markers and parentage analyses, I inferred distances of pollen dispersal (father-to-mother), seed dispersal/maternal gene flow (mother-to-offspring) as well as paternal gene flow (father-to-offspring) for four early life stages of the species (seeds and fruits, current year seedlings, seedlings ≤ 3yr, seedlings > 3yr). Distances of pollen and seed dispersal as well as paternal gene flow were significantly shorter than expected from the spatial arrangement of trees and sampling plots. They were not affected by the density of conspecific trees in the surrounding. At the propagule stage, mean pollen dispersal distances were considerably (23-fold) longer than seed dispersal distances, and paternal gene flow distances exceeded maternal gene flow by a factor of 25. Seed dispersal distances were remarkably restricted, potentially leading to a strong initial SGS. The initial genetic template created by pollination and seed dispersal was extensively altered during later recruitment stages. Potential Janzen-Connell effects led to markedly increasing distances between offspring and both parental trees in older life stages. This showed that distance and density-dependent mortality factors are not exclusively related to the mother tree, but also to the father. Across subsequent recruitment stages, the pollen to seed dispersal ratio and the paternal to maternal gene flow ratio dropped to 2.1 and 3.4, respectively, in seedlings > 3yr. The relative changes in effective pollen dispersal, seed dispersal, and paternal gene flow distances across recruitment stages elucidate the mechanisms affecting the contribution of the two processes pollen and seed dispersal to overall gene flow. Using the same six microsatellite loci, I analyzed genetic diversity and SGS across five life stages, from seed rain to adults. Levels of genetic diversity within the studied P. africana population were comparable to other Prunus species and did not vary across life stages. In congruence with the short seed dispersal distances, I found significant SGS in all life stages. SGS decreased from seed and early seedling stages to older juvenile stages, and it was higher in adults than in late juveniles of the next generation. A comparison of the data with direct assessments of contemporary gene flow patterns indicate that distance- or density-dependent mortality, potentially due to Janzen-Connell effects, led to the initial decrease in SGS. Intergeneration variation in SGS could have been driven by variation in demographic processes, the effect of overlapping generations, and local selection processes. Overall, my study showed that complex sequential processes during recruitment contribute to the spatial genetic structure of tree populations. It highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal-mediated pollen and seed dispersal on spatial population dynamics and genetic patterns of trees.
Resumo:
The introduction of dwarfed rootstocks in apple crop has led to a new concept of intensive planting systems with the aim of producing early high yield and with returns of the initial high investment. Although yield is an important aspect to the grower, the consumer has become demanding regards fruit quality and is generally attracted by appearance. To fulfil the consumer’s expectations the grower may need to choose a proper training system along with an ideal pruning technique, which ensure a good light distribution in different parts of the canopy and a marketable fruit quality in terms of size and skin colour. Although these aspects are important, these fruits might not reach the proper ripening stage within the canopy because they are often heterogeneous. To describe the variability present in a tree, a software (PlantToon®), was used to recreate the tree architecture in 3D in the two training systems. The ripening stage of each of the fruits was determined using a non-destructive device (DA-Meter), thus allowing to estimate the fruit ripening variability. This study deals with some of the main parameters that can influence fruit quality and ripening stage within the canopy and orchard management techniques that can ameliorate a ripening fruit homogeneity. Significant differences in fruit quality were found within the canopies due to their position, flowering time and bud wood age. Bi-axis appeared to be suitable for high density planting, even though the fruit quality traits resulted often similar to those obtained with a Slender Spindle, suggesting similar fruit light availability within the canopies. Crop load confirmed to be an important factor that influenced fruit quality as much as the interesting innovative pruning method “Click”, in intensive planting systems.