988 resultados para Transport facilities
Resumo:
The structural, magnetic and electrical transport properties of the Sn-doped TbMnO3 manganites are studied by X-ray diffraction, ac susceptibility, dc magnetization and electrical resistivity measurements. The Sn doping into the Tb and Mn sites of TbMnO3 compresses the unit cell and changes parameters of the antiferromagnetic phase whereas the magnetic moment of Mn are only weakly affected. The electrical resistivity of doped manganites is reduced and the activation energy EA is determined for the thermally activated conduction. © 2007 Elsevier B.V. All rights reserved.
Resumo:
La0.7Ca0.3MnO3/Mn3O4 composites can be synthesized in one step by thermal treatment of a spray-dried precursor, instead of mixing pre-synthesized powders. Another advantage of this composite system is that a long sintering step can be used without leading to significant modification of the manganite composition. The percolation threshold is reached at ∼20 vol% of manganite phase. The 77 K low field magnetoresistance is enhanced to ∼11% at 0.15 T when the composition is close to the percolation threshold. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
The magneto-transport properties of Bi1.5Pb0.4Nb0.1Sr2Ca2Cu 3O10-x polycrystalline, superconducting ceramic are reported. The material was found to be chemically homogeneous and partially textured. The mixed state properties were investigated by measuring the electrical resistivity, longitudinal and transverse (Nernst effect) thermoelectric power, and thermal conductivity. The magnetization and AC susceptibility measurements were also performed. The variation of these characteristics for magnetic fields up to 5 T are discussed and compared to those of the zero field case. The transport entropy and thermal Hall angle are extracted and quantitatively compared to previously reported data of closely related systems. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Many bacteria on earth exist in surface-attached communities known as biofilms. These films are responsible for manifold problems, including hospital-acquired infections and biofouling, but they can also be beneficial. Biofilm growth depends on the transport of nutrients and waste, for which diffusion is thought to be the main source of transport. However, diffusion is ineffective for transport over large distances and thus should limit growth. Nevertheless, biofilms can grow to be very large. Here we report the presence of a remarkable network of well-defined channels that form in wild-type Bacillus subtilis biofilms and provide a system for enhanced transport. We observe that these channels have high permeability to liquid flow and facilitate the transport of liquid through the biofilm. In addition, we find that spatial variations in evaporative flux from the surface of these biofilms provide a driving force for the flow of liquid in the channels. These channels offer a remarkably simple system for liquid transport, and their discovery provides insight into the physiology and growth of biofilms.
Resumo:
The effects of turbulent Reynolds number, Ret, on the transport of scalar dissipation rate of reaction progress variable in the context of Reynolds averaged Navier-Stokes simulations have been analyzed using three-dimensional simplified chemistry-based direct numerical simulation (DNS) data of freely propagating turbulent premixed flames with different values of Ret. Scaling arguments have been used to explain the effects of Ret on the turbulent transport, scalar-turbulence interaction, and the combined reaction and molecular dissipation terms. Suitable modifications to the models for these terms have been proposed to account for Ret effects, and the model parameters include explicit Ret dependence. These expressions approach expected asymptotic limits for large values of Ret. However, turbulent Reynolds number Ret does not seem to have any major effects on the modeling of the term arising from density variation. Copyright © Taylor and Francis Group, LLC.
Resumo:
We present a multiplexing scheme for the measurement of large numbers of mesoscopic devices in cryogenic systems. The multiplexer is used to contact an array of 256 split gates on a GaAs/AlGaAs heterostructure, in which each split gate can be measured individually. The low-temperature conductance of split-gate devices is governed by quantum mechanics, leading to the appearance of conductance plateaux at intervals of 2e^2/h. A fabrication-limited yield of 94% is achieved for the array, and a "quantum yield" is also defined, to account for disorder affecting the quantum behaviour of the devices. The quantum yield rose from 55% to 86% after illuminating the sample, explained by the corresponding increase in carrier density and mobility of the two-dimensional electron gas. The multiplexer is a scalable architecture, and can be extended to other forms of mesoscopic devices. It overcomes previous limits on the number of devices that can be fabricated on a single chip due to the number of electrical contacts available, without the need to alter existing experimental set ups.
Resumo:
The two-dimensional heterostructure nanobelts with a central CdSe region and lateral CdS structures are synthesized by a two-step physical vapor transport method. The large growth rate difference between lateral CdS structures on both +/- (0001) sides of the CdSe region is found. The growth anisotropy is discussed in terms of the polar nature of the side +/- (0001) surfaces of CdSe. High-resolution transmission electron microscopy reveals the CdSe central region covered with non-uniform CdS layer/islands. From micro-photoluminescence measurements, a systematic blueshift of emission energy from the central CdSe region in accordance with the increase of lateral CdS growth temperature is observed. This result indicates that the intermixing rate in the CdSe region with CdS increases with the increase of lateral CdS growth temperature. In conventional CdSSe ternary nanostructures, morphology and emission wavelength were correlated parameters. However, the morphology and emission wavelength are independently controllable in the CdS/CdSe lateral heterostructure nanobelts. This structure is attractive for applications in visible optoelectronic devices.
Resumo:
High frequency Rayleigh and Sezawa modes propagating in the ZnO/GaAs system capable of operating immersed in liquid helium have been engineered. In the case of the Rayleigh mode, the strong attenuation produced by the liquid is counteracted by the strengthening of the mode induced by the ZnO. However, in the case of the Sezawa modes, the attenuation is strongly reduced taking advantage of the depth profile of their acoustic Poynting vectors, that extend deeper into the layered system, reducing the energy radiated into the fluid. Thus, both tailored modes will be suitable for acoustically-driven single-electron and single-photon devices in ZnO-coated GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2012 IEEE.
Resumo:
We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circuit currents. To further characterize the fabricated devices, the electronic properties of the different networks were measured via the transient photocurrent and photovoltage decay techniques. Nanowire-based devices exhibit extremely high, light independent electron transport rates while recombination dynamics remain unchanged. This indicates, contrary to expectations, a decoupling of transport and recombination dynamics. For typical nanoparticle-based photoanodes, the devices are usually considered electron-limited due to the poor electron transport through nanocrystalline titania networks. In the case of the nanowire-based devices, the system becomes limited by the organic hole transporter used. In the case of polycrystalline TiO2 nanotube-based devices, we observe lower transport rates and higher recombination dynamics than their nanoparticle-based counterparts, suggesting that in order to improve the electron transport properties of solid-state dye-sensitized solar cells, single crystalline structures should be used. These findings should aid future design of photoanodes based on nanowires or porous semiconductors with extended crystallinity to be used in dye-sensitized solar cells. © 2013 The Royal Society of Chemistry.
Resumo:
Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.
Resumo:
Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal beta/gamma-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, Delta GRT1 Delta GRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in Delta GRT1 Delta GRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from Delta GRT1 Delta GRT2 cells appear less adhesive than those from the wild type.