996 resultados para Toxic plants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium and phosphorus are important macronutrients for crops but are often deficient in the field. Very little is known about how plants sense fluctuations in K and P and how information about K and P availability is integrated at the whole plant level into physiological and metabolic adaptations. This chapter reviews recent advances in discovering molecular responses of plants to K and P deficiency by microarray experiments. These studies provide us not only with a comprehensive picture of adaptive mechanisms, but also with a large number of transcriptional markers that can be used to identify upstream components of K and P signalling pathways. On the basis of the available information we discuss putative receptors and signals involved in the sensing and integration of K and P status both at the cellular and at the whole plant level. These involve membrane potential, voltage-dependent ion channels, intracellular Ca and pH, and transcription factors, as well as hormones and metabolites for systemic signalling. Genetic screens of reporter lines for transcriptional markers and metabolome analysis of K- and P-deficient plants are likely to further advance our knowledge in this area in the near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcriptome of an organism is its set of gene transcripts (mRNAs) at a defined spatial and temporal locus. Because gene expression is affected markedly by environmental and developmental perturbations, it is widely assumed that transcriptome divergence among taxa represents adaptive phenotypic selection. This assumption has been challenged by neutral theories which propose that stochastic processes drive transcriptome evolution. To test for evidence of neutral transcriptome evolution in plants, we quantified 18 494 gene transcripts in nonsenescent leaves of 14 taxa of Brassicaceae using robust cross-species transcriptomics which includes a two-step physical and in silico-based normalization procedure based on DNA similarity among taxa. Transcriptome divergence correlates positively with evolutionary distance between taxa and with variation in gene expression among samples. Results are similar for pseudogenes and chloroplast genes evolving at different rates. Remarkably, variation in transcript abundance among root-cell samples correlates positively with transcriptome divergence among root tissues and among taxa. Because neutral processes affect transcriptome evolution in plants, many differences in gene expression among or within taxa may be nonfunctional, reflecting ancestral plasticity and founder effects. Appropriate null models are required when comparing transcriptomes in space and time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High soil phosphorus (P) concentration is frequently shown to reduce root colonization by arbuscular mycorrhizal (AM) fungi, but the influence of P on the diversity of colonizing AM fungi is uncertain. We used terminal restriction fragment length polymorphism (T-RFLP) of 18S rDNA and cloning to assess diversity of AM fungi colonizing maize (Zea mays), soybean (Glycene max) and field violet (Viola arvensis) at three time points in one season along a P gradient of 10280mgl1 in the field. Percentage AM colonization changed between sampling time points but was not reduced by high soil P except in maize. There was no significant difference in AM diversity between sampling time points. Diversity was reduced at concentrations of P > 25mgl1, particularly in maize and soybean. Both cloning and T-RFLP indicated differences between AM communities in the different host species. Host species was more important than soil P in determining the AM community, except at the highest P concentration. Our results show that the impact of soil P on the diversity of AM fungi colonizing plants was broadly similar, despite the fact that different plants contained different communities. However, subtle differences in the response of the AM community in each host were evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cesium (Cs) is chemically similar to potassium (K). However, although K is an essential element, Cs is toxic to plants. Two contrasting hypotheses to explain Cs toxicity have been proposed: (1) extracellular Cs+ prevents K+ uptake and, thereby, induces K starvation; and (2) intracellular Cs+ interacts with vital K+-binding sites in proteins, either competitively or noncompetitively, impairing their activities. We tested these hypotheses with Arabidopsis (Arabidopsis thaliana). Increasing the Cs concentration in the agar (Cs(agar)) on which Arabidopsis were grown reduced shoot growth. Increasing the K concentration in the agar (K(agad)) increased the Cs(agar) at which Cs toxicity was observed. However, although increasing Cs(agar) reduced shoot K concentration (K(shoot)), the decrease in shoot growth appeared unrelated to K(shoot) per se. Furthermore, the changes in gene expression in Cs-intoxicated plants differed from those of K-starved plants, suggesting that Cs intoxication was not perceived genetically solely as K starvation. In addition to reducing K(shoot) increasing Cs(agar) also increased shoot Cs concentration (Cs(shoot)), but shoot growth appeared unrelated to Cs(shoot) per se. The relationship between shoot growth and Cs(shoot)/Kt(shoot) suggested that, at a nontoxic Cs(shoot) growth was determined by K(shoot) but that the growth of Cs-intoxicated plants was related to the Cs(shoot)/K(shoot) quotient. This is consistent with Cs intoxication resulting from competition between K+ and Cs+ for K+-binding sites on essential proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants constantly sense the changes in their environment; when mineral elements are scarce, they often allocate a greater proportion of their biomass to the root system. This acclimatory response is a consequence of metabolic changes in the shoot and an adjustment of carbohydrate transport to the root. It has long been known that deficiencies of essential macronutrients (nitrogen, phosphorus, potassium and magnesium) result in an accumulation of carbohydrates in leaves and roots, and modify the shoot-to-root biomass ratio. Here, we present an update on the effects of mineral deficiencies on the expression of genes involved in primary metabolism in the shoot, the evidence for increased carbohydrate concentrations and altered biomass allocation between shoot and root, and the consequences of these changes on the growth and morphology of the plant root system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exceptionally broad species diversity of vascular plant genera in east Asian temperate forests, compared with their sister taxa in North America, has been attributed to the greater climatic diversity of east Asia, combined with opportunities for allopatric speciation afforded by repeated fragmentation and coalescence of populations through Late Cenozoic ice-age cycles1. According to Qian and Ricklefs1, these opportunities occurred in east Asia because temperate forests extended across the continental shelf to link populations in China, Korea and Japan during glacial periods, whereas higher sea levels during interglacial periods isolated these regions and warmer temperatures restricted temperate taxa to disjunct refuges. However, palaeovegetation data from east Asia2, 3, 4, 5, 6 show that temperate forests were considerably less extensive than today during the Last Glacial Maximum, calling into question the coalescence of tree populations required by the hypothesis of Qian and Ricklefs1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibitory effects of toxin-producing phytoplankton (TPP) on zooplankton modulate the dynamics of marine plankton. In this article, we employ simple mathematical models to compare theoretically the dynamics of phytoplankton–zooplankton interaction in situations where the TPP are present with those where TPP are absent. We consider two sets of three-component interaction models: one that does not include the effect of TPP and the other that does. The negative effects of TPP on zooplankton is described by a non-linear interaction term. Extensive theoretical analyses of the models have been performed to understand the qualitative behaviour of the model systems around every possible equilibria. The results of local-stability analysis and numerical simulations demonstrate that the two model-systems differ qualitatively with regard to oscillations and stability. The model system that does not include TPP is asymptotically stable around the coexisting equilibria, whereas, the system that includes TPP oscillates for a range of parametric values associated with toxin-inhibition rate and competition coefficients. Our analysis suggests that the qualitative dynamics of the plankton–zooplankton interactions are very likely to alter due to the presence of TPP species, and therefore the effects of TPP should be considered carefully while modelling plankton dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Claviceps purpurea is a biotrophic fungal pathogen of grasses causing the ergot disease. The infection process of C. purpurea on rye flowers is accompanied by pectin degradation and polygalacturonase (PG) activity represents a pathogenicity factor. Wheat is also infected by C. purpurea and we tested whether the presence of polygalacturonase inhibiting protein (PGIP) can affect pathogen infection and ergot disease development. Wheat transgenic plants expressing the bean PvPGIP2 did not show a clear reduction of disease symptoms when infected with C. purpurea. To ascertain the possible cause underlying this lack of improved resistance of PvPGIP2 plants, we expressed both polygalacturonases present in the C. purpurea genome, cppg1 and cppg2 in Pichia pastoris. In vitro assays using the heterologous expressed PGs and PvPGIP2 showed that neither PG is inhibited by this inhibitor. To further investigate the role of PG in the C. purpurea/wheat system, we demonstrated that the activity of both PGs of C. purpurea is reduced on highly methyl esterified pectin. Finally, we showed that this reduction in PG activity is relevant in planta, by inoculating with C. purpurea transgenic wheat plants overexpressing a pectin methyl esterase inhibitor (PMEI) and showing a high degree of pectin methyl esterification. We observed reduced disease symptoms in the transgenic line compared with null controls. Together, these results highlight the importance of pectin degradation for ergot disease development in wheat and sustain the notion that inhibition of pectin degradation may represent a possible route to control of ergot in cereals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migratory grazing of zooplankton between non-toxic phytoplankton (NTP) and toxic phytoplankton (TPP) is a realistic phenomena unexplored so far. The present article is a first step in this direction. A mathematical model of NTP–TPP-zooplankton with constant and variable zooplankton migration is proposed and analyzed. The asymptotic dynamics of the model system around the biologically feasible equilibria is explored through local stability analysis. The dynamics of the proposed system is explored and displayed for different combination of migratory parameters and toxin inhibition parameters. Our analysis suggests that the migratory grazing of zooplankton has a significant role in determining the dynamic stability and oscillation of phytoplankton zooplankton systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enrichment in resource availability theoretically destabilizes predator–prey dynamics (the paradox of enrichment). However, a minor change in the resource stoichiometry may make a prey toxic for the predator, and the presence of toxic prey affects the dynamics significantly. Here, theoretically we explore how, at increased carrying capacity, a toxic prey affects the oscillation or destabilization of predator–prey dynamics, and how its presence influences the growth of the predator as well as that of a palatable prey. Mathematical analysis determines the bounds on the food toxicity that allow the coexistence of a predator along with a palatable and a toxic prey. The overall results demonstrate that toxic food counteracts oscillation (destabilization) arising from enrichment of resource availability. Moreover, our results show that, at increased resource availability, toxic food that acts as a source of extra mortality may increase the abundance of the predator as well as that of the palatable prey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the mutual dependencies and interactions among different groups of species of the plankton population, based on an analysis of the long-term field observations carried out by our group in the North–West coast of the Bay of Bengal. The plankton community is structured into three groups of species, namely, non-toxic phytoplankton (NTP), toxic phytoplankton (TPP) and zooplankton. To find the pair-wise dependencies among the three groups of plankton, Pearson and partial correlation coefficients are calculated. To explore the simultaneous interaction among all the three groups, a time series analysis is performed. Following an Expectation Maximization (E-M) algorithm, those data points which are missing due to irregularities in sampling are estimated, and with the completed data set a Vector Auto-Regressive (VAR) model is analyzed. The overall analysis demonstrates that toxin-producing phytoplankton play two distinct roles: the inhibition on consumption of toxic substances reduces the abundance of zooplankton, and the toxic materials released by TPP significantly compensate for the competitive disadvantages among phytoplankton species. Our study suggests that the presence of TPP might be a possible cause for the generation of a complex interaction among the large number of phytoplankton and zooplankton species that might be responsible for the prolonged coexistence of the plankton species in a fluctuating biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The environmental impacts of genetically modified crops is still a controversial issue in Europe. The overall risk assessment framework has recently been reinforced by the European Food Safety Authority(EFSA) and its implementation requires harmonized and efficient methodologies. The EU-funded research project AMIGA − Assessing and monitoring Impacts of Genetically modified plants on Agro-ecosystems − aims to address this issue, by providing a framework that establishes protection goals and baselines for European agro-ecosystems, improves knowledge on the potential long term environmental effects of genetically modified (GM) plants, tests the efficacy of the EFSA Guidance Document for the Environmental Risk Assessment, explores new strategies for post market monitoring, and provides a systematic analysis of economic aspects of Genetically Modified crops cultivation in the EU. Research focuses on ecological studies in different EU regions, the sustainability of GM crops is estimated by analysing the functional components of the agro-ecosystems and specific experimental protocols are being developed for this scope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.