935 resultados para Tower


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vols. for 2000- published in Standish, Maine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rainfall variability occurs over a wide range of temporal scales. Knowledge and understanding of such variability can lead to improved risk management practices in agricultural and other industries. Analyses of temporal patterns in 100 yr of observed monthly global sea surface temperature and sea level pressure data show that the single most important cause of explainable, terrestrial rainfall variability resides within the El Nino-Southern Oscillation (ENSO) frequency domain (2.5-8.0 yr), followed by a slightly weaker but highly significant decadal signal (9-13 yr), with some evidence of lesser but significant rainfall variability at interclecadal time scales (15-18 yr). Most of the rainfall variability significantly linked to frequencies tower than ENSO occurs in the Australasian region, with smaller effects in North and South America, central and southern Africa, and western Europe. While low-frequency (LF) signals at a decadal frequency are dominant, the variability evident was ENSO-like in all the frequency domains considered. The extent to which such LF variability is (i) predictable and (ii) either part of the overall ENSO variability or caused by independent processes remains an as yet unanswered question. Further progress can only be made through mechanistic studies using a variety of models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stirred Mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. In the first part of this paper, media flow patterns and energy absorption rates and distributions were analysed to provide a good understanding of the media flow and the collisional environment in these mills. In this second part we analyse steady state coherent flow structures, liner stress and wear by impact and abrasion. We also examine mixing and transport efficiency. Together these provide a comprehensive understanding of all the key processes operating in these mills and a clear understanding of the relative performance issues. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stirred mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. Media flow patterns and energy absorption rates and distributions are analysed here. In the second part of this paper, coherent flow structures, equipment wear and mixing and transport efficiency are analysed. (C) 2006 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer processing experiments have been conducted with a twin screw extruder. Different formulations of starch-based nanocomposites are being tested in a pilot scale film blowing tower. The physical properties of different starch-based films have been examined with thermal and mechanical analysis and X-ray diffraction. The results show that the addition of organoclay significantly improves both the processing and tensile properties over the original starch blends. The mechanical and thermal properties of the blends are also sensitive to the scale the clay particles are dispersed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the 24 hour period following inoculation, aggregation of spores and sporelings can have an important effect on the subsequent growth of filamentous fungi in submerged culture. This early phase of growth does not appear to have received much attention, and it was for this reason that the author's research was started. The aggregation, germination and early growth of the filamentous fungus Aspergillus niger have been followed in aerated tower fermenters, by microscopic examination. By studying many individual sporelings it has been possible to estimate the specific growth rate and germination times, and then to assess the branching characteristics of the fungus over a period of from 1 to 10 hours after germination. The results have been incorporated into computer models to simulate the development of the physical structure of individual and aggregated sporelings. Following germination, and an initial rapid growth phase, fungi were found to grow exponentially: in the case of A.niger the mean germination time was about 5 hours and the doubling time was as short as 1.5 hours. Branching also followed an exponential pattern and appeared to be related to hyphal length. Using a simple hypothesis for growth along with empirical parameters, typical fungal structures were generated using the computer models : these compared well with actual sporelings observed under the microscope. Preliminary work suggested that the techniques used in this research could be successfully applied to a range of filamentous fungi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was made to determine the conditions under which the optimum droplet size distribution (ie., narrowest size range with a minimum of fines and over-sized agglomerates), is generated in sprays from centrifugal pressure nozzles. A range of non-Newtonian detergent slurries were tested but the results are of wider application and parallel work was undertaken with water, ionic solutions and chalk slurries. Six centrifugal pressure nozzles were used and the drop-size distributions correlated as a function of fluid properties, pressure, fiowrate, feed temperature, and nozzle characteristics. Measurements were made using a Malvern Particle Size Anayser slung across a specially-designed transparent tower section of approximately 1.2m diameter in order to reduce obscuration caused by the spray and improve existing droplet sizing techniques. The results obtained were based upon the Rosin-Rammler distribution model and the Size Analyser provided a direct print-out of size distribution and the parameters characterising it. A Spraying System nozzle, AAASSTC8-8, produced the optimum spray distribution with the detergent slurry at a temperature of 60°C whilst operating at 1200 psi. With other fluids the Delevan 2.2SJ nozzle produced the optimum spray distribution operating at 1200 psi but with the Spraying Systems nozzles there was no clear-cut optimum set of conditions, ie. the nozzle and pressure varied depending upon the fluid being sprayed. The mechanisms of liquid sheet break-up and droplet dispersion were investigated in specially-constructed, scaled-up, transparent nozzles. A mathematical model of centrifugal pressure nozzle atomisation was developed based upon fundamental operating parameters rather than resorting to empirical correlations. This enabled theoretical predictions to be made over a wide range of operating conditions and nozzle types. The model predictions for volumetric fiowrate, liquid sheet length and air core diameter showed good agreement with the experimentally determined results. However, the model predicted smaller droplet sizes than were produced experimentally due to inaccuracies identified in the initial assumptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The literature pertaining to the key stages of spray drying has been reviewed in the context of the mathematical modelling of drier performance. A critical review is also presented of previous spray drying models. A new mathematical model has been developed for prediction of spray drier performance. This is applicable to slurries of rigid, porous crust-forming materials to predict trajectories and drying profiles for droplets with a distribution of sizes sprayed from a centrifugal pressure nozzle. The model has been validated by comparing model predictions to experimental data from a pilot-scale counter-current drier and from a full-scale co-current drier. For the latter, the computed product moisture content was within 2%, and the computed air exit temperature within 10oC of experimental data. Air flow patterns have been investigated in a 1.2m diameter transparent countercurrent spray tower by flow visualisation. Smoke was introduced into various zones within the tower to trace the direction, and gauge the intensity, of the air flow. By means of a set of variable-angle air inlet nozzles, a variety of air entry configurations was investigated. The existence of a core of high rotational and axial velocity channelling up the axis of the tower was confirmed. The stability of flow within the core was found to be strongly dependent upon the air entry arrangement. A probe was developed for the measurement of air temperature and humidity profiles. This was employed for studying evaporation of pure water drops in a 1.2m diameter pilot-scale counter-current drier. A rapid approach to the exit air properties was detected within a 1m distance from the air entry ports. Measured radial profiles were found to be virtually flat but, from the axial profiles, the existence of plug-flow, well-mixed-flow and some degree of air short-circuiting can be inferred. The model and conclusions should assist in the improved design and optimum operation of industrial spray driers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful commercialization of a technology such as Fiber Bragg Gratings requires the ability to manufacture devices repeatably, quickly and at low cost. Although the first report of photorefractive gratings was in 1978 it was not until 1993, when phase mask fabrication was demonstrated, that this became feasible. More recently, draw tower fabrication on a production level and grating writing through the polymer jacket have been realized; both important developments since they preserve the intrinsic strength of the fiber. Potentially the most significant recent development has been femtosecond laser inscription of gratings. Although not yet a commercial technology, it provides the means of writing multiple gratings in the optical core providing directional sensing capability in a single fiber. Femtosecond processing can also be used to machine the fiber to produce micronscale slots and holes enhancing the interaction between the light in the core and the surrounding medium. © 2011 Bentham Science Publishers Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence of the relationship between altered cognitive function and depleted Fe status is accumulating in women of reproductive age but the degree of Fe deficiency associated with negative neuropsychological outcomes needs to be delineated. Data are limited regarding this relationship in university women in whom optimal cognitive function is critical to academic success. The aim of the present study was to examine the relationship between body Fe, in the absence of Fe-deficiency anaemia, and neuropsychological function in young college women. Healthy, non-Anaemic undergraduate women (n 42) provided a blood sample and completed a standardised cognitive test battery consisting of one manual (Tower of London (TOL), a measure of central executive function) and five computerised (Bakan vigilance task, mental rotation, simple reaction time, immediate word recall and two-finger tapping) tasks. Women's body Fe ranged from - 4·2 to 8·1 mg/kg. General linear model ANOVA revealed a significant effect of body Fe on TOL planning time (P= 0.002). Spearman's correlation coefficients showed a significant inverse relationship between body Fe and TOL planning time for move categories 4 (r - 0.39, P= 0.01) and 5 (r - 0.47, P= 0.002). Performance on the computerised cognitive tasks was not affected by body Fe level. These findings suggest that Fe status in the absence of anaemia is positively associated with central executive function in otherwise healthy college women. Copyright © The Authors 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful commercialization of a technology such as Fiber Bragg Gratings requires the ability to manufacture devices repeatably, quickly and at low cost. Although the first report of photorefractive gratings was in 1978 it was not until 1993, when phase mask fabrication was demonstrated, that this became feasible. More recently, draw tower fabrication on a production level and grating writing through the polymer jacket have been realized; both important developments since they preserve the intrinsic strength of the fiber. Potentially the most significant recent development has been femtosecond laser inscription of gratings. Although not yet a commercial technology, it provides the means of writing multiple gratings in the optical core providing directional sensing capability in a single fiber. Femtosecond processing can also be used to machine the fiber to produce micronscale slots and holes enhancing the interaction between the light in the core and the surrounding medium. © 2011 Bentham Science Publishers Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forest disturbances are major sources of carbon dioxide to the atmosphere, and therefore impact global climate. Biogeophysical attributes, such as surface albedo (reflectivity), further control the climate-regulating properties of forests. Using both tower-based and remotely sensed data sets, we show that natural disturbances from wildfire, beetle outbreaks, and hurricane wind throw can significantly alter surface albedo, and the associated radiative forcing either offsets or enhances the CO2 forcing caused by reducing ecosystem carbon sequestration over multiple years. In the examined cases, the radiative forcing from albedo change is on the same order of magnitude as the CO2 forcing. The net radiative forcing resulting from these two factors leads to a local heating effect in a hurricane-damaged mangrove forest in the subtropics, and a cooling effect following wildfire and mountain pine beetle attack in boreal forests with winter snow. Although natural forest disturbances currently represent less than half of gross forest cover loss, that area will probably increase in the future under climate change, making it imperative to represent these processes accurately in global climate models.