971 resultados para Tissue plasminogen activator
Resumo:
Purpose. Aminolevulinic acid (5-ALA) diffusion through both keratinised and non-keratinised tissue, used as a model tissue substrates, was evaluated, together with the depth of permeation and the concentration achieved following delivery from bioadhesive patch and proprietary cream formulations. Materials and Methods. Moisture-activated, bioadhesive patches loaded with 5-ALA at concentrations of 19.0, 38.0 and 50.0 mg cm(-2) and an o/w cream (20% w/w 5-ALA) were radiolabelled with C14 5-ALA and applied to excised human vaginal tissue and porcine skin. After 1, 2 and 4 h, tissue was sectioned in two orientations and the 5-ALA concentration at specific depths determined using autoradiography and liquid scintillation counting (LSC). Results. The stratum corneum was a significant barrier to 5-ALA permeation, with concentrations in tissue dependent on application time and drug loading. 5-ALA was detected at 6 mm using autoradiography after 2 h, with LSC showing phototoxic concentrations at 2.375 mm after 4 h of application. Inclusion of oleic acid and dimethyl sulphoxide in bioadhesive patches increased 5-ALA significantly in neonate porcine tissue, but only for patches cast from blends containing 5% w/w oleic acid. Conclusions. The bioadhesive patch described delivered 5-ALA to depths of at least 2.5 mm in tissue types indicative of vulval skin, suggesting that photodynamic therapy of deep vulval intraepithelial neoplasia is feasible using this means of bioadhesive 5-ALA delivery.
Resumo:
Lung T lymphocytes are important in pulmonary immunity and inflammation. it has been difficult to study these cells due to contamination with other cell types, mainly alveolar macrophages. We have developed a novel method for isolating lung T cells from lung resection tissue, using a combination of approaches. Firstly the lung tissue was finely chopped and filtered through a nylon mesh. Lymphocytic cells were enriched by Percoll density centrifugation and the T cells purified using human CD3 microbeads, resulting in 90.5% +/- 1.9% (n = 11) pure lymphocytes. The T cell yield from the crude cell preparation was 10.8 +/- 2.1% and viability, calculated using propidium iodide (PI) staining and trypan blue, was typically over 95%. The purification process did not affect expression of CD69 or CD103, nor was there a difference in the proportion of CD4 and CD8 cells between the starting population and the purified cells. Microarray analysis and real time RT-PCR revealed upregulation of GAPDH and CXCR6 of the lung T cells as compared to blood-derived T cells. This technique highly enriches lung T cells to allow detailed investigation of the biology of these cells. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Substantive evidence implicates vitamin D receptor (VDR) or its natural ligand 1a,25-(OH)2 D3 in modulation of tumor growth. However, both human and animal studies indicate tissue-specificity of effect. Epidemiological studies show both inverse and direct relationships between serum 25(OH)D levels and common solid cancers. VDR ablation affects carcinogen-induced tumorigenesis in a tissue-specific manner in model systems. Better understanding of the tissue-specificity of vitamin D-dependent molecular networks may provide insight into selective growth control by the seco-steroid, 1a,25-(OH)2 D3. This commentary considers complex factors that may influence the cell- or tissue-specificity of 1a,25-(OH)2 D3/VDR growth effects, including local synthesis, metabolism and transport of vitamin D and its metabolites, vitamin D receptor (VDR) expression and ligand-interactions, 1a,25-(OH)2 D3 genomic and non-genomic actions, Ca2+ flux, kinase activation, VDR interactions with activating and inhibitory vitamin D responsive elements (VDREs) within target gene promoters, VDR coregulator recruitment and differential effects on key downstream growth regulatory genes. We highlight some differences of VDR growth control relevant to colonic, esophageal, prostate, pancreatic and other cancers and assess the potential for development of selective prevention or treatment strategies.