968 resultados para Tissue Inhibitor Of Matrix Metalloproteinases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs, including the membrane-type MMPs (MT-MMPs)), a disintegrin and metalloproteinase (ADAM), and ADAM with thrombospondin motifs belong to the metzincins, a subclass of metalloproteinases that contain a Met residue and a Zn(2+) ion at the catalytic site necessary for enzymatic reaction. MMP proteolytic activity is mainly controlled by their natural tissue inhibitors of metalloproteinase (TIMP). A number of synthetic inhibitors have been developed to control deleterious MMP activity. The roles of MMPs and some of their ECM substrates in CNS physiology and pathology are covered by other chapters of the present volume and will thus not be addressed in depth. This chapter will focus (i) on the endogenous MMP inhibitors in the CNS, (ii) on MMP and TIMP regulations in three large classes of neuropathologic processes (inflammatory, neurodegenerative, and infectious), and (iii) on synthetic inhibitors of MMPs and the perspective of their use in different brain diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nail is the largest skin appendage. It grows continuously through life in a non-cyclical manner; its growth is not hormone-dependent. The nail of the middle finger of the dominant hand grows fastest with approximately 0.1 mm/day, whereas the big toe nail grows only 0.03-0.05 mm/d. The nails' size and shape vary characteristically from finger to finger and from toe to toe, for which the size and shape of the bone of the terminal phalanx is responsible. The nail apparatus consists of both epithelial and connective tissue components. The matrix epithelium is responsible for the production of the nail plate whereas the nail bed epithelium mediates firm attachment. The hyponychium is a specialized structure sealing the subungual space and allowing the nail plate to physiologically detach from the nail bed. The proximal nail fold covers most of the matrix. Its free end forms the cuticle which seals the nail pocket or cul-de-sac. The dermis of the matrix and nail bed is specialized with a morphogenetic potency. The proximal and lateral nail folds form a frame on three sides giving the nail stability and allowing it to grow out. The nail protects the distal phalanx, is an extremely versatile tool for defense and dexterity and increases the sensitivity of the tip of the finger. Nail apparatus, finger tip, tendons and ligaments of the distal interphalangeal joint form a functional unit and cannot be seen independently. The nail organ has only a certain number of reaction patterns that differ in many respects from hairy and palmoplantar skin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altered gap junctional coupling potentiates slow conduction and arrhythmias. To better understand how heterogeneous connexin expression affects conduction at the cellular scale, we investigated conduction in tissue consisting of two cardiomyocyte populations expressing different connexin levels. Conduction was mapped using microelectrode arrays in cultured strands of foetal murine ventricular myocytes with prede fi ned contents of connexin 43 knockout (Cx43KO) cells. Corresponding computer simulations were run in randomly generated two-dimensional tissues mimicking the cellular architecture of the strands. In the cultures, the relationship between conduction velocity (CV) and Cx43KO cell content was nonlinear. CV fi rst decreased signi fi cantly when Cx43KO content was increased from 0 to 50%. When the Cx43KO content was ≥ 60%, CV became comparabletothatin100%Cx43KOstrands.Co-culturingCx43KOandwild-typecellsalsoresultedinsigni fi cantly more heterogeneous conduction patterns and in frequent conduction blocks. The simulations replicated this behaviour of conduction. For Cx43KO contents of 10 – 50%, conduction was slowed due to wavefront meandering between Cx43KO cells. For Cx43KO contents ≥ 60%, clusters of remaining wild-type cells acted as electrical loads thatimpairedconduction.ForCx43KOcontentsof40 – 60%,conductionexhibitedfractal characteristics,wasprone to block, and was more sensitive to changes in ion currents compared to homogeneous tissue. In conclusion, conduction velocity and stability behave in a nonline ar manner when cardiomyocytes expressing different connexin amounts are combined. This behaviour results from heterogeneous current-to-load relationships at the cellular level. Such behaviour is likely to be arrhythmogenic in various clinical contexts in which gap junctional coupling is heterogeneous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a fraction of patients surgically treated for cleft lip/palate, excessive scarring disturbs maxillary growth and dento-alveolar development. Since certain genes are involved in craniofacial morphogenesis as well as tissue repair, a primary defect causing cleft lip/palate could lead to altered wound healing. We performed in vitro wound healing assays with primary lip fibroblasts from 16 cleft lip/palate patients. Nine foreskin fibroblast strains were included for comparison. Cells were grown to confluency and scratch wounds were applied; wound closure was monitored morphometrically over time. Wound closure rate showed highly significant differences between fibroblast strains. Statistically, fibroblast strains from the 25 individuals could be divided into three migratory groups, namely "fast", "intermediate", and "slow". Most cleft lip/palate fibroblasts were distributed between the "fast" (5 strains) and the "intermediate" group (10 strains). These phenotypes were stable over different cell passages from the same individual. Expression of genes involved in cleft lip/palate and wound repair was determined by quantitative PCR. Transforming growth factor-α mRNA was significantly up-regulated in the "fast" group. 5 ng/ml transforming growth factor-α added to the culture medium increased the wound closure rate of cleft lip/palate strains from the "intermediate" migratory group to the level of the "fast", but had no effect on the latter group. Conversely, antibody to transforming growth factor-α or a specific inhibitor of its receptor most effectively reduced the wound closure rate of "fast" cleft lip/palate strains. Thus, fibroblasts from a distinct subgroup of cleft lip/palate patients exhibit an increased migration rate into wounds in vitro, which is linked to higher transforming growth factor-α expression and attenuated by interfering with its signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To assess whether Bcl-2, an inhibitor of the apoptotic cascade, can predict response to neoadjuvant chemotherapy in patients with urothelial cancer of the bladder (UCB). METHODS Bcl-2 expression was analyzed in 2 different tissue microarrays (TMAs). One TMA was constructed of primary tumors and their corresponding lymph node (LN) metastases from 152 patients with chemotherapy-naive UCB treated by cystectomy and pelvic lymphadenectomy (chemotherapy-naive TMA cohort). The other TMA was constructed of tumor samples obtained from 55 patients with UCB before neoadjuvant chemotherapy (transurethral resection of the bladder cancer) and after cystectomy with pelvic lymphadenectomy (residual primary tumor [ypT+], n = 38); residual LN metastases [ypN+], n = 24) (prechemotherapy/postchemotherapy TMA cohort). Bcl-2 overexpression was defined as 10% or more cancer cells showing cytoplasmic immunoreactivity. RESULTS In both TMA cohorts, Bcl-2 overexpression was significantly (P<0.05) more frequent in LN metastases than in primary tumors (chemotherapy-naive TMA group: 18/148 [12%] in primary tumors vs. 39/143 [27%] in metastases; postchemotherapy TMA: ypT+7/35 [20%] vs. ypN+11/19 [58%]). In the neoadjuvant setting, patients with Bcl-2 overexpression in transurethral resection of the bladder cancer specimens showed significantly (P = 0.04) higher ypT stages and less regression in their cystectomy specimens than did the control group, and only one-eighth (13%) had complete tumor regression (ypT0 ypN0). In survival analyses, only histopathological parameters added significant prognostic information. CONCLUSIONS Bcl-2 overexpression in chemotherapy-naive primary bladder cancer is related to poor chemotherapy response and might help to select likely nonresponders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Chronic hepatitis C infection is a global disease with 160 million people infected worldwide. Until recently, therapy was characterized by long duration, suboptimal success rates and significant adverse drug reactions. The development of direct-acting antivirals initiated a dramatic change in the treatment of hepatitis C. AREAS COVERED: This review covers the development of the novel NS5A inhibitor ombitasvir (ABT-267) and its clinical evaluation in Phase I to III trials as monotherapy and in combination with the NS3/4A inhibitor ABT-450/r and the non-nucleoside NS5B inhibitor dasabuvir (ABT-333) ± ribavirin. EXPERT OPINION: Ombitasvir (ABT-267) is a potent inhibitor of the hepatitis C virus protein NS5A, has favorable pharmacokinetic characteristics and is active in the picomolar range against genotype 1 - 6. In patients with genotype 1 and 4, 12-week combination treatment with ombitasvir, dasabuvir and ABT-450/r plus ribavirin was highly effective and resulted in 12-week sustained virological response rates higher than 95% in treatment-naöve and treatment-experienced patients. In liver transplant recipients with genotype 1 hepatitis C, success rates in the same range can be expected after 24 weeks of treatment according to preliminary trial results. Genotype 1a patients with compensated cirrhosis who were prior nonresponders benefit from a treatment duration of 24 weeks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Demineralized bone matrix (DBM) is used for the treatment of osseous defects. Conditioned medium from native bone chips can activate transforming growth factor (TGF)-β signaling in mesenchymal cells. The aim of the study was to determine whether processing of native bone into DBM affects the activity of the conditioned medium. METHODS: Porcine cortical bone blocks were subjected to defatting, different concentrations of hydrochloric acid and various temperatures. DBM was lyophilized, ground, and placed into culture medium. Human gingiva and periodontal fibroblasts were exposed to the respective conditioned medium (DBCM). Changes in the expression of TGF-β target genes were determined. RESULTS: DBCM altered the expression of TGF-β target genes, e.g., adrenomedullin, pentraxin 3, KN Motif And Ankyrin Repeat Domains 4, interleukin 11, NADPH oxidase 4, and BTB (POZ) Domain Containing 11, by at least five-fold. The response was observed in fibroblasts from both sources. Defatting lowered the activity of DBCM. The TGF-β receptor type I kinase inhibitor SB431542, but not the inhibitor of bone morphogenetic protein receptor dorsomorphin, blocked the effects of DBCM on gene expression. Moreover, conditioned medium obtained from commercial human DBM modulated the expression of TGF-β target genes. CONCLUSION: The findings suggest that the conditioned medium from demineralized bone matrix can activate TGF-β signaling in oral fibroblasts. KEYWORDS: TGF-beta superfamily proteins; bone; bone substitutes; bone transplantation; conditioned media; freeze drying

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present review was to summarize the evidence available on the temporal sequence of hard and soft tissue healing around titanium dental implants in animal models and in humans. A search was undertaken to find animal and human studies reporting on the temporal dynamics of hard and soft tissue integration of titanium dental implants. Moreover, the influence of implant surface roughness and chemistry on the molecular mechanisms associated with osseointegration was also investigated. The findings indicated that the integration of titanium dental implants into hard and soft tissue represents the result of a complex cascade of biological events initiated by the surgical intervention. Implant placement into alveolar bone induces a cascade of healing events starting with clot formation and continuing with the maturation of bone in contact with the implant surface. From a genetic point of view, osseointegration is associated with a decrease in inflammation and an increase in osteogenesis-, angiogenesis- and neurogenesis-associated gene expression during the early stages of wound healing. The attachment and maturation of the soft tissue complex (i.e. epithelium and connective tissue) to implants becomes established 6-8 weeks following surgery. Based on the findings of the present review it can be concluded that improved understanding of the mechanisms associated with osseointegration will provide leads and targets for strategies aimed at enhancing the clinical performance of titanium dental implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable magnesium plate/screw osteosynthesis systems were implanted on the frontal bone of adult miniature pigs. The chosen implant geometries were based on existing titanium systems used for the treatment of facial fractures. The aim of this study was to evaluate the in vivo degradation and tissue response of the magnesium alloy WE43 with and without a plasma electrolytic surface coating. Of 14 animals, 6 received magnesium implants with surface modification (coated), 6 without surface modification (uncoated), and 2 titanium implants. Radiological examination of the skull was performed at 1, 4, and 8 weeks post-implantation. After euthanasia at 12 and 24 weeks, X-ray, computed tomography, and microfocus computed tomography analyses and histological and histomorphological examinations of the bone/implant blocks were performed. The results showed a good tolerance of the plate/screw system without wound healing disturbance. In the radiological examination, gas pocket formation was found mainly around the uncoated plates 4 weeks after surgery. The micro-CT and histological analyses showed significantly lower corrosion rates and increased bone density and bone implant contact area around the coated screws compared to the uncoated screws at both endpoints. This study shows promising results for the further development of coated magnesium implants for the osteosynthesis of the facial skeleton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nail unit is the largest and a rather complex skin appendage. It is located on the dorsal aspect of the tips of fingers and toes and has important protective and sensory functions. Development begins in utero between weeks 7 and 8 and is fully formed at birth. For its correct development, a great number of signals are necessary. Anatomically, it consists of 4 epithelial components: the matrix that forms the nail plate; the nail bed that firmly attaches the plate to the distal phalanx; the hyponychium that forms a natural barrier at the physiological point of separation of the nail from the bed; and the eponychium that represents the undersurface of the proximal nail fold which is responsible for the formation of the cuticle. The connective tissue components of the matrix and nail bed dermis are located between the corresponding epithelia and the bone of the distal phalanx. Characteristics of the connective tissue include: a morphogenetic potency for the regeneration of their epithelia; the lateral and proximal nail folds form a distally open frame for the growing nail; and the tip of the digit has rich sensible and sensory innervation. The blood supply is provided by the paired volar and dorsal digital arteries. Veins and lymphatic vessels are less well defined. The microscopic anatomy varies from nail subregion to subregion. Several different biopsy techniques are available for the histopathological evaluation of nail alterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coagulation factor XII (FXII) inhibitors are of interest for the study of the protease in the intrinsic coagulation pathway, for the suppression of contact activation in blood coagulation assays, and they have potential application in antithrombotic therapy. However, synthetic FXII inhibitors developed to date have weak binding affinity and/or poor selectivity. Herein, we developed a peptide macrocycle that inhibits activated FXII (FXIIa) with an inhibitory constant Ki of 22 nM and a selectivity of >2000-fold over other proteases. Sequence and structure analysis revealed that one of the two macrocyclic rings of the in vitro evolved peptide mimics the combining loop of corn trypsin inhibitor, a natural protein-based inhibitor of FXIIa. The synthetic inhibitor blocked intrinsic coagulation initiation without affecting extrinsic coagulation. Furthermore, the peptide macrocycle efficiently suppressed plasma coagulation triggered by contact of blood with sample tubes and allowed specific investigation of tissue factor initiated coagulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An accurate and efficient determination of the highly toxic Cr(VI) in solid materials is important to determine the total Cr(VI) inventory of contaminated sites and the Cr(VI) release potential from such sites into the environment. Most commonly, total Cr(VI) is extracted from solid materials following a hot alkaline extraction procedure (US EPA method 3060A) where a complete release of water-extractable and sparingly soluble Cr(VI) phase is achieved. This work presents an evaluation of matrix effects that may occur during the hot alkaline extraction and in the determination of the total Cr(VI) inventory of variably composed contaminated soils and industrial materials (cement, fly ash) and is compared to water-extractable Cr(VI) results. Method validation including multiple extractions and matrix spiking along with chemical and mineralogical characterization showed satisfying results for total Cr(VI) contents for most of the tested materials. However, unreliable results were obtained by applying method 3060A to anoxic soils due to the degradation of organic material and/or reactions with Fe2+-bearing mineral phases. In addition, in certain samples discrepant spike recoveries have to be also attributed to sample heterogeneity. Separation of possible extracted Cr(III) by applying cation-exchange cartridges prior to solution analysis further shows that under the hot alkaline extraction conditions only Cr(VI) is present in solution in measurable amounts, whereas Cr(III) gets precipitated as amorphous Cr(OH)3(am). It is concluded that prior to routine application of method 3060A to a new material type, spiking tests are recommended for the identification of matrix effects. In addition, the mass of extracted solid material should to be well adjusted to the heterogeneity of the Cr(VI) distribution in the material in question.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin 4 (IL-4) is expected to play a dominant role in the development of T helper (Th) 2 cells. Th2 immune responses with expression of relatively large amounts of interleukin 4 (IL-4) but little interferon gamma (IFN-gamma) are characteristic for chronic helminth infections. But no information is available about IL4 expression during early Fasciola hepatica (F. hepatica) infections in cattle. Therefore, we investigated F. hepatica specific IL-4 and IFN-gamma mRNA expression in peripheral blood mononuclear cells (PBMCs) from calves experimentally infected with F. hepatica. Cells were collected prior to infection and on post-inoculation days (PIDs) 10, 28 and 70. Interestingly, PBMCs responded to stimulation with F. hepatica secretory-excretory products (FhSEP) already on PID 10 and expressed high amounts of IL-4 but not of IFN-gamma mRNA suggesting that F. hepatica induced a Th2 biased early immune response which was not restricted to the site of infection. Later in infection IL-4 mRNA expression decreased whereas IFN-gamma mRNA expression increased slightly. Isolated lymph node cells (LNCs) stimulated with FhSEP and, even more importantly, non-stimulated LN tissue samples indicated highly polarized Th2 type immune responses in the draining (hepatic) lymph node, but not in the retropharyngeal lymph node. During preliminary experiments, two splice variants of bovine IL-4 mRNA, boIL-4delta2 and boIL-4delta3, were detected. Since a human IL-4delta2 was assumed to act as competitive inhibitor of IL-4, it was important to know whether expression of these splice variants of bovine IL-4 have a regulatory function during an immune response to infection with F. hepatica. Indeed, IL-4 splice variants could be detected in a number of samples, but quantitative analysis did not yield any clue to their function. Therefore, the significance of bovine IL-4 splice variants remains to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparison of gene expressing profiles between gliomas with different grades revealed frequent overexpression of insulin-like growth factor binding protein 2 (IGFBP2) in glioblastomas (GBM), in which uncontrolled cell proliferation, angiogenesis, invasion and anti-apoptosis are hallmarks. Using the glia-specific gene transfer transgenic mouse and the stable LN229(BP2) GBM cell lines, we found that IGFBP2 by itself cannot transform cells in vitro and in vivo. IGFBP2 had growth inhibitory effects on mouse primary neural progenitors, but overexpression of IGFBP2 had no effect on GBM cells. ^ Although IGFBP2 does not initiate gliomagenesis, using tissue array technology, we observed strong correlation between IGFBP2 overexpression and VEGF up-regulation in human diffuse gliomas. Furthermore, overexpression of IGFBP2 in GBM cells not only enhanced VEGF expression but also increased the malignant potential of U87 MG cells in our angiogenesis xenograft animal model. ^ In parallel to these studies, using established stable SNB19 GBM cells that overexpress IGFBP2, we found that IGFBP2 significantly increased invasion by induction of matrix metalloproteinase-2 (MMP-2) as well as other invasion related genes, providing evidence that IGFBP2 contributes to glioma progression in part by enhancing MMP-2 gene transcription and in turn tumor cell invasion. ^ Finally, we found that primary filial cells infected with an anti-sense IGFBP2 construct have markedly increased sensitivity to γ irradiation and reduced Akt activation. On the other hand, SNB19(BP2) stable lines have consistently increased levels of Akt and NFkB activation, suggesting that one possible mechanism for anti-apoptosic function of IGFBP2 is through the activation of Akt and NFkB. Beside this, what is especially interesting is the finding that Akt protein was cleaved and inactivated during apoptosis by caspases, and IGFBP2 can prevent Akt cleavage, revealing another possible mechanism through it IGFBP2 exhibit strong antiapoptotic effects. Our data showed that IGFBP2 is a specific substrate for caspase-3, raising the possibility that IGFBP2 may inhibit apoptosis by a suicide mechanism. ^ In summary, using cellular, genomics, and molecular approaches, this thesis documented the potential roles of IGFBP2 in glioma progression. Our findings shed light on an important biological aspect of glioma progression and may provide new insights useful for the design of novel mechanism-based therapies for GBM. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in therapy for colorectal cancer have been hampered by development of resistance to chemotherapy. The Src family of protein tyrosine kinases has been associated with colorectal cancer development and progression. Activation of the prototypic member of the family, Src, occurs in advanced colorectal cancer and is associated with a worse outcome. This work tests the hypotheses that Src activation contributes to chemoresistance in some colon tumors and that this resistance can be overcome by use of Src inhibitors. The aims of the proposal were to (1) determine if constitutive Src activation is sufficient to induce oxaliplatin resistance; (2) evaluate the role of reactive oxygen species (ROS) in the activation of Src after oxaliplatin treatment; (3) determine the frequency of Src activation in liver metastases after oxaliplatin treatment; and (4) evaluate the safety, preliminary efficacy, and pharmacodynamics of the combination of dasatinib with oxaliplatin-based therapy in patients with metastatic colorectal cancer. ^ Using a panel of colon cancer cell lines and murine models, I demonstrate that administration of oxaliplatin, a commonly utilized chemotherapy for colorectal cancer, results in an increased activation of Src. The activation occurs acutely in some, but not all, colorectal carcinoma cell lines. Cell lines selected for oxaliplatin resistance are further increased in Src activity. Treatment of cell lines with dasatinib, a non-selective pharmacologic inhibitor of the Src family kinases synergistically killed some, but not all cell lines. Cell lines with the highest acute activation of Src after oxaliplatin administration were the most sensitive to the combination therapy. Previous work demonstrated that siRNA to Src increased sensitivity to oxaliplatin, suggesting that the effects of dasatinib are primarily due to its ability to inhibit Src in these cell lines. ^ To examine the mechanism underlying these results, I examined the effects of reactive oxygen species (ROS), as previous studies have demonstrated that platinum chemotherapeutics result in intracellular oxidative stress. I demonstrated that oxaliplatin-induced reactive oxygen species were higher in the cell lines with Src activation, relative to those in which Src was not activated. This oxaliplatin-induced Src activation was blocked by the administration of anti-oxidants, thereby demonstrating that synergistic killing between dasatinib and oxaliplatin was associated with the ability of the latter to generate ROS. ^ In a murine model of colorectal cancer metastasis to the liver, the combination of dasatinib and oxaliplatin was more effective in reducing tumor volume than either agent alone. However, when oxaliplatin resistant cell lines were treated with a combination of oxaliplatin and AZD0530, an inhibitor in the clinic with increased specificity for Src, no additional benefit was seen, although Src was activated by oxaliplatin and Src substrates were inhibited. The indolent growth of oxaliplatin-resistant cells, unlike the growth of oxaliplatin resistant tumors in patients, precludes definitive interpretation of these results. ^ To further explore Src activation in patients with oxaliplatin exposure and resistance, an immunohistochemistry analysis of tumor tissue from resected liver metastases of colorectal cancer was performed. Utilizing a tissue microarray, staining for phosphorylated Src and FAK demonstrated strong staining of tumor relative to stromal and normal liver. In patients recently exposed to oxaliplatin, there was increased FAK activation, supporting the clinical relevance of the prior preclinical studies. ^ To pursue the potential clinical benefit of the combination of Src inhibition with oxaliplatin, a phase IB clinical trial was completed. Thirty patients with refractory metastatic colorectal cancer were treated with a combination of 5-FU, oxaliplatin, an epidermal-growth factor receptor monoclonal antibody, and dasatinib. The recommended phase II dose of dasatinib was established, and toxicities were quantified. Pharmacodynamic studies demonstrated increased phosphorylation of the Src substrate paxillin after dasatinib therapy. Tumor biopsies were obtained and Src expression levels were quantitated. Clinical benefit was seen with the combination, including a response rate of 20% and disease control rate of 56%, prompting a larger clinical study. ^ In summary, although Src is constitutively activated in metastatic colorectal cancer, administration of oxaliplatin chemotherapy can further increase its activity, through a reactive oxygen species dependent manner. Inhibition of Src in combination with oxaliplatin provides additional benefit in vitro, in preclinical animal models, and in the clinic. Further study of Src inhibition in the clinic and identification of predictive biomarkers of response will be required to further advance this promising therapeutic target. ^