933 resultados para Tie Breaking


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutralino dark matter in supersymmetric models is revisited in the presence of flavor violation in the soft supersymmetry breaking sector. We focus on flavor violation the sleptonic sector and study the implications for the co-annihilation regions. Flavor is introduced by a single (mu) over tilde (R) - (T) over tilde (R) insertion in the slepton mass matrix. Limits on insertion from BR(tau -> mu + gamma) are weak in some regions of the parameter space where happen within the amplitudes. We look for overlaps in parameter space where the co-annihilation condition as well as the cancellations within the amplitudes occur. mSUGRA, such overlap regions are not existent, whereas they are present in models non-universal Higgs boundary conditions (NUHM). The effect of flavor violation is fold: (a) it shifts the co-annihilation regions towards lighter neutralino masses (b) co-annihilation cross sections would be modified with the inclusion of flavor violating which can contribute significantly. Even if flavor violation is within the presently limits, this is sufficient to modify the thermally averaged cross-sections by about 15)% in mSUGRA and (20{30)% in NUHM, depending on the parameter space. In overlap regions, the flavor violating cross sections become comparable and in some even dominant to the flavor conserving ones. A comparative study of the channels is for mSUGRA and NUHM cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage source inverters (VSIs) supply nonsinusoidal voltages to induction motor drives, leading to line current distortion and torque pulsation. Conventional space vector pulsewidth modulation (PWM) techniques are widely used in VSIs on the account of good waveform quality and high dc bus utilization. In a conventional space vector PWM technique, the switching sequence begins with one zero state and ends with the other zero state in a subcycle. Some novel switching sequences have been proposed, which employ only one zero state but apply one of the two active states twice in a subcycle. One pair of such special switching sequences has recently been shown to reduce the pulsating torque considerably. In this paper, the conventional and special switching sequences are compared experimentally in terms of acoustic noise. In the low-and medium-speed ranges, the special switching sequence is seen to reduce the amplitude of the tonal component of noise at the switching frequency considerably and is also found to result in spread spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The program SuSeFLAV is introduced for computing supersymmetric mass spectra with flavour violation in various supersymmetric breaking scenarios with/without see-saw mechanism. A short user guide summarizing the compilation, executables and the input files is provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We interpret the recent discovery of a 125 GeV Higgs-like state in the context of a two-Higgs-doublet model with a heavy fourth sequential generation of fermions, in which one Higgs doublet couples only to the fourth-generation fermions, while the second doublet couples to the lighter fermions of the first three families. This model is designed to accommodate the apparent heaviness of the fourth-generation fermions and to effectively address the low-energy phenomenology of a dynamical electroweak-symmetry-breaking scenario. The physical Higgs states of the model are, therefore, viewed as composites primarily of the fourth-generation fermions. We find that the lightest Higgs, h, is a good candidate for the recently discovered 125 GeV spin-zero particle, when tan beta similar to O(1), for typical fourth-generation fermion masses of M-4G = 400-600 GeV, and with a large t-t' mixing in the right-handed quark sector. This, in turn, leads to BR(t' -> th) similar to O(1), which drastically changes the t' decay pattern. We also find that, based on the current Higgs data, this two-Higgs-doublet model generically predicts an enhanced production rate (compared to the Standard Model) in the pp -> h -> tau tau channel, and reduced rates in the VV -> h -> gamma gamma and p (p) over bar /pp -> V -> hV -> Vbb channels. Finally, the heavier CP-even Higgs is excluded by the current data up to m(H) similar to 500 GeV, while the pseudoscalar state, A, can be as light as 130 GeV. These heavier Higgs states and the expected deviations from the Standard Model din some of the Higgs production channels can be further excluded or discovered with more data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A current-error space-vector-based hysteresis current controller for a general n-level voltage-source inverter (VSI)-fed three-phase induction motor (IM) drive is proposed here, with control of the switching frequency variation for the full linear modulation range. The proposed current controller monitors the space-vector-based current error of an n-level VSI-fed IM to keep the current error within a parabolic boundary, using the information of the current triangular sector in which the tip of the reference vector lies. Information of the reference voltage vector is estimated using the measured current-error space vectors, along the alpha- and beta-axes. Appropriate dimension and orientation of this parabolic boundary ensure a switching frequency spectrum similar to that of a constant-switching-frequency voltage-controlled space vector pulsewidth modulation (PWM) (SVPWM)-based IM drive. Like SVPWM for multilevel inverters, the proposed controller selects inverter switching vectors, forming a triangular sector in which the tip of the reference vector stays, for the hysteresis PWM control. The sector in the n-level inverter space vector diagram, in which the tip of the fundamental stator voltage stays, is precisely detected, using the sampled reference space vector estimated from the instantaneous current-error space vectors. The proposed controller retains all the advantages of a conventional hysteresis controller such as fast current control, with smooth transition to the overmodulation region. The proposed controller is implemented on a five-level VSI-fed 7.5-kW IM drive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We revisit the issue of considering stochasticity of Grassmannian coordinates in N = 1 superspace, which was analyzed previously by Kobakhidze et al. In this stochastic supersymmetry (SUSY) framework, the soft SUSY breaking terms of the minimal supersymmetric Standard Model (MSSM) such as the bilinear Higgs mixing, trilinear coupling, as well as the gaugino mass parameters are all proportional to a single mass parameter xi, a measure of supersymmetry breaking arising out of stochasticity. While a nonvanishing trilinear coupling at the high scale is a natural outcome of the framework, a favorable signature for obtaining the lighter Higgs boson mass m(h) at 125 GeV, the model produces tachyonic sleptons or staus turning to be too light. The previous analyses took Lambda, the scale at which input parameters are given, to be larger than the gauge coupling unification scale M-G in order to generate acceptable scalar masses radiatively at the electroweak scale. Still, this was inadequate for obtaining m(h) at 125 GeV. We find that Higgs at 125 GeV is highly achievable, provided we are ready to accommodate a nonvanishing scalar mass soft SUSY breaking term similar to what is done in minimal anomaly mediated SUSY breaking (AMSB) in contrast to a pure AMSB setup. Thus, the model can easily accommodate Higgs data, LHC limits of squark masses, WMAP data for dark matter relic density, flavor physics constraints, and XENON100 data. In contrast to the previous analyses, we consider Lambda = M-G, thus avoiding any ambiguities of a post-grand unified theory physics. The idea of stochastic superspace can easily be generalized to various scenarios beyond the MSSM. DOI: 10.1103/PhysRevD.87.035022

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate supersymmetric spectra are required to confront data from direct and indirect searches of supersymmetry. SuSeFLAV is a numerical tool capable of computing supersymmetric spectra precisely for various supersymmetric breaking scenarios applicable even in the presence of flavor violation. The program solves MSSM RGEs with complete 3 x 3 flavor mixing at 2-loop level and one loop finite threshold corrections to all MSSM parameters by incorporating radiative electroweak symmetry breaking conditions. The program also incorporates the Type-I seesaw mechanism with three massive right handed neutrinos at user defined mass scales and mixing. It also computes branching ratios of flavor violating processes such as l(j) -> l(i)gamma, l(j) -> 3 l(i), b -> s gamma and supersymmetric contributions to flavor conserving quantities such as (g(mu) - 2). A large choice of executables suitable for various operations of the program are provided. Program summary Program title: SuSeFLAV Catalogue identifier: AEOD_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 76552 No. of bytes in distributed program, including test data, etc.: 582787 Distribution format: tar.gz Programming language: Fortran 95. Computer: Personal Computer, Work-Station. Operating system: Linux, Unix. Classification: 11.6. Nature of problem: Determination of masses and mixing of supersymmetric particles within the context of MSSM with conserved R-parity with and without the presence of Type-I seesaw. Inter-generational mixing is considered while calculating the mass spectrum. Supersymmetry breaking parameters are taken as inputs at a high scale specified by the mechanism of supersymmetry breaking. RG equations including full inter-generational mixing are then used to evolve these parameters up to the electroweak breaking scale. The low energy supersymmetric spectrum is calculated at the scale where successful radiative electroweak symmetry breaking occurs. At weak scale standard model fermion masses, gauge couplings are determined including the supersymmetric radiative corrections. Once the spectrum is computed, the program proceeds to various lepton flavor violating observables (e.g., BR(mu -> e gamma), BR(tau -> mu gamma) etc.) at the weak scale. Solution method: Two loop RGEs with full 3 x 3 flavor mixing for all supersymmetry breaking parameters are used to compute the low energy supersymmetric mass spectrum. An adaptive step size Runge-Kutta method is used to solve the RGEs numerically between the high scale and the electroweak breaking scale. Iterative procedure is employed to get the consistent radiative electroweak symmetry breaking condition. The masses of the supersymmetric particles are computed at 1-loop order. The third generation SM particles and the gauge couplings are evaluated at the 1-loop order including supersymmetric corrections. A further iteration of the full program is employed such that the SM masses and couplings are consistent with the supersymmetric particle spectrum. Additional comments: Several executables are presented for the user. Running time: 0.2 s on a Intel(R) Core(TM) i5 CPU 650 with 3.20 GHz. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identical parallel-connected converters with unequal load sharing have unequal terminal voltages. The difference in terminal voltages is more pronounced in case of back-to-back connected converters, operated in power-circulation mode for the purpose of endurance tests. In this paper, a synchronous reference frame based analysis is presented to estimate the grid current distortion in interleaved, grid-connected converters with unequal terminal voltages. Influence of carrier interleaving angle on rms grid current ripple is studied theoretically as well as experimentally. Optimum interleaving angle to minimize the rms grid current ripple is investigated for different applications of parallel converters. The applications include unity power factor rectifiers, inverters for renewable energy sources, reactive power compensators, and circulating-power test set-up used for thermal testing of high-power converters. Optimum interleaving angle is shown to be a strong function of the average of the modulation indices of the two converters, irrespective of the application. The findings are verified experimentally on two parallel-connected converters, circulating reactive power of up to 150 kVA between them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new scheme for nine-level voltage space-vector generation for medium-voltage induction motor (IM) drives with open-end stator winding is presented in this paper. The proposed nine-level power converter topology consists of two conventional three-phase two-level voltage source inverters powered by isolated dc sources and six floating-capacitor-connected H-bridges. The H-bridge capacitor voltages are effectively maintained at the required asymmetrical levels by employing a space vector modulation (SVPWM) based control strategy. An interesting feature of this topology is its ability to function in five-or three-level mode, in the entire modulation range, at full-power rating, in the event of any failure in the H-bridges. This feature significantly improves the reliability of the proposed drive system. Each leg of the three-phase two-level inverters used in this topology switches only for a half cycle of the reference voltage waveform. Hence, the effective switching frequency is reduced by half, resulting in switching loss reduction in high-voltage devices. The transient as well as the steady-state performance of the proposed nine-level inverter-fed IM drive system is experimentally verified in the entire modulation range including the overmodulation region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the Randall-Sundrum (RS) setup to be a theory of flavor, as an alternative to Froggatt-Nielsen models instead of as a solution to the hierarchy problem. The RS framework is modified by taking the low-energy brane to be at the grand unified theory (GUT) scale. This also alleviates constraints from flavor physics. Fermion masses and mixing angles are fit at the GUT scale. The ranges of the bulk mass parameters are determined using a chi(2) fit taking into consideration the variation in O(1) parameters. In the hadronic sector, the heavy top quark requires large bulk mass parameters localizing the right-handed top quark close to the IR brane. Two cases of neutrino masses are considered: (a) Planck scale lepton number violation and (b) Dirac neutrino masses. Contrary to the case of weak scale RS models, both these cases give reasonable fits to the data, with the Planck scale lepton number violation fitting slightly better compared to the Dirac case. In the supersymmetric version, the fits are not significantly different except for the variation in tan beta. If the Higgs superfields and the supersymmetry breaking spurion are localized on the same brane, then the structure of the sfermion masses are determined by the profiles of the zero modes of the hypermultiplets in the bulk. Trilinear terms have the same structure as the Yukawa matrices. The resultant squark spectrum is around similar to 2-3 TeV required by the light Higgs mass to be around 125 GeV and to satisfy the flavor violating constraints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase-locked loops (PLLs) are necessary in applications which require grid synchronization. Presence of unbalance or harmonics in the grid voltage creates errors in the estimated frequency and angle of a PLL. The error in estimated angle has the effect of distorting the unit vectors generated by the PLL. In this paper, analytical expressions are derived which determine the error in the phase angle estimated by a PLL when there is unbalance and harmonics in the grid voltage. By using the derived expressions, the total harmonic distortion (THD) and the fundamental phase error of the unit vectors can be determined for a given PLL topology and a given level of unbalance and distortion in the grid voltage. The accuracy of the results obtained from the analytical expressions is validated with the simulation and experimental results for synchronous reference frame PLL (SRF-PLL). Based on these expressions, a new tuning method for the SRF-PLL is proposed which quantifies the tradeoff between the unit vector THD and the bandwidth of the SRF-PLL. Using this method, the exact value of the bandwidth of the SRF-PLL can be obtained for a given worst case grid voltage unbalance and distortion to have an acceptable level of unit vector THD. The tuning method for SRF-PLL is also validated experimentally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a quantum system, there may be many density matrices associated with a state on an algebra of observables. For each density matrix, one can compute its entropy. These are, in general, different. Therefore, one reaches the remarkable possibility that there may be many entropies for a given state R. Sorkin (private communication)]. This ambiguity in entropy can often be traced to a gauge symmetry emergent from the nontrivial topological character of the configuration space of the underlying system. It can also happen in finite-dimensional matrix models. In the present work, we discuss this entropy ambiguity and its consequences for an ethylene molecule. This is a very simple and well-known system, where these notions can be put to tests. Of particular interest in this discussion is the fact that the change of the density matrix with the corresponding entropy increase drives the system towards the maximally disordered state with maximum entropy, where Boltzman's formula applies. Besides its intrinsic conceptual interest, the simplicity of this model can serve as an introduction to a similar discussion of systems such as colored monopoles and the breaking of color symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present the molecular density distribution measurement in turbulent nitrogen jet (Re approximate to 3 x 10(3)), using acetone as molecular tracer. The tracer was seeded in the nitrogen jet by purging through the liquid acetone at ambient temperature. Planar laser sheet of 266 nm wavelength from frequency quadrupled, Q-switched, Nd:YAG laser was used as an excitation source. Emitted fluorescence images of jet flow field were recorded on CMOS camera. The dependence of planar laser induced fluorescence (PLIF) intensity on acetone vapor density was used to convert PLIF image of nitrogen jet into the density image on pixel-by-pixel basis. Instantaneous quantitative density image of nitrogen jet, seeded with acetone, was obtained. The arrowhead-shaped coherent turbulent structures were observed in the present work. It was found that coherent structures were non-overlapping with separate boundaries. Breaking of coherent structures into turbulence was clearly observed above four times jet width.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sub-solidus phase relations in the ternary systems CaO-RuO2-SiO2 and CaO-RuO2-V2O5 have been refined using thermodynamic data on calcium ruthenates, silicates and vanadates. Tie lines are established by considering Gibbs energy change for exchange reactions. Quaternary oxides have not been detected in these systems. Because of the relatively large entropy associated with phase transition of Ca2SiO4 from olivine to alpha' structure at 1120 K, reversal of one tie line is seen in the system CaO-RuO2-SiO2 between 950 and 1230 K. There is no change in sub-solidus phase relation as a function of temperature in the system CaO-RuO2-V2O5. Since vanadium can exist in several lower oxidation states, the computed sub-solidus phase relations are valid only at high oxygen partial pressures. There is fair agreement between the computed phase diagram and the limited experimental information available for CaO-deficient compositions in the literature. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid diagnostics and virtual imaging of damages in complex structures like folded plate can help reduce the inspection time for guided wave based NDE and integrated SHM. Folded plate or box structure is one of the major structural components for increasing the structural strength. Damage in the folded plate, mostly in the form of surface breaking cracks in the inaccessible zone is a usual problem in aerospace structures. One side of the folded plate is attached (either riveted or bonded) to adjacent structure which is not accessible for immediate inspection. The sensor-actuator network in the form of a circular array is placed on the accessible side of the folded plate. In the present work, a circular array is employed for scanning the entire folded plate type structure for damage diagnosis and wave field visualization of entire structural panel. The method employs guided wave with relatively low frequency bandwidth of 100-300 kHz. Change in the response signal with respect to a baseline signal is used to construct a quantitative relationship with damage size parameters. Detecting damage in the folded plate by using this technique has significant potential for off-line and on-line SHM technologies. By employing this technique, surface breaking cracks on inaccessible face of the folded plate are detected without disassembly of structure in a realistic environment.