957 resultados para Thyroid nodule
Resumo:
Estrogen has multiple effects on lipid and lipoprotein metabolism. We investigated the association between the four common single nucleotide polymorphisms in the estrogen receptor 1 (ESR1) gene locus, -1989T>G, +261G>C, IVS1-397T>C and IVS1-351A>G, and lipid and lipoprotein levels in southern Brazilians. The sample consisted in 150 men and 187 premenopausal women. The women were considered premenopausal if they had regular menstrual bleeding within the previous 3 months and were 18-50 years of age. Exclusion criteria were pregnancy, secondary hyperlipidemia due to renal, hepatic or thyroid disease, and diabetes. Smoking status was self-reported; subjects were classified as never smoked and current smokers. DNA was amplified by PCR and was subsequently digested with the appropriate restriction enzymes. Statistical analysis was carried out for men and women separately. In the study population, major allele frequencies were _1989*T (0.83), +261*G (0.96), IVS1-397*T (0.58), and IVS1-351*A (0.65). Multiple linear regression analyses indicated that an interaction between +261G>C polymorphism and smoking was a significant factor affecting high-density lipoprotein cholesterol (HDL-C) levels (P = 0.028) in women. Nonsmoking women with genotype G/C of +261G>C polymorphism had mean HDL-C levels higher than those with G/G genotype (1.40 ± 0.33 vs 1.22 ± 0.26 mmol/L; P = 0.033). No significant associations with lipid and lipoprotein levels in women and men were detected for other polymorphisms. In conclusion, the +261G>C polymorphism might influence lipoprotein and lipid levels in premenopausal women, but these effects seem to be modulated by smoking, whereas in men ESR1 polymorphisms were not associated with high lipoprotein levels.
Resumo:
Subclinical hypothyroidism (SHT) is a disease for which exact therapeutic approaches have not yet been established. Previous studies have suggested an association between SHT and coronary heart disease. Whether this association is related to SHT-induced changes in serum lipid levels or to endothelial dysfunction is unclear. The aim of this study was to determine endothelial function measured by the flow-mediated vasodilatation of the brachial artery and the carotid artery intima-media thickness (IMT) in a group of women with SHT compared with euthyroid subjects. Triglycerides, total cholesterol, HDL-C, LDL-C, apoprotein A (apo A), apo B, and lipoprotein(a) were also determined. Twenty-one patients with SHT (mean age: 42.4 ± 10.8 years and mean thyroid-stimulating hormone (TSH) levels: 8.2 ± 2.7 µIU/mL) and 21 euthyroid controls matched for body mass index, age and atherosclerotic risk factors (mean age: 44.2 ± 8.5 years and mean TSH levels: 1.4 ± 0.6 µIU/mL) participated in the study. Lipid parameters (except HDL-C and apo A, which were lower) and IMT values were higher in the common carotid and carotid bifurcation of SHT patients with positive serum thyroid peroxidase antibodies (TPO-Ab) (0.62 ± 0.2 and 0.62 ± 0.16 mm for the common carotid and carotid bifurcation, respectively) when compared with the negative TPO-Ab group (0.55 ± 0.24 and 0.58 ± 0.13 mm, for common carotid and carotid bifurcation, respectively). The difference was not statistically significant. We conclude that minimal thyroid dysfunction had no adverse effects on endothelial function in the population studied. Further investigation is warranted to assess whether subclinical hypothyroidism, with and without TPO-Ab-positive serology, has any effect on endothelial function.
Resumo:
We investigated the effect of the -278A>C polymorphism in the CYP7A1 gene on the response of plasma lipids to a reduced-fat diet for 6 to 8 weeks in a group of 82 dyslipidemic males with a mean age of 46.0 ± 11.7 years. Individuals who presented at least one high alteration in total cholesterol, low-density lipoprotein cholesterol or triglyceride values were considered to be dyslipidemic. Exclusion criteria were secondary dyslipidemia due to diabetes mellitus, renal, liver, or thyroid disease. None of the subjects were using lipid-lowering medication. Baseline and follow-up lipid concentrations were measured. The genotypes were determined by the digestion of PCR products with the BsaI restriction endonuclease. There were statistically significant reductions in plasma total cholesterol, low-density lipoprotein cholesterol and triglyceride concentrations after dietary intervention. The minor allele C has a frequency of 43%. Carriers of the C allele had significantly lower triglyceride concentrations (P = 0.02) than AA homozygotes. After adjustment of covariates, subjects with the AC and CC genotypes showed a greater reduction in triglyceride concentrations compared to subjects with the AA genotype. Multiple linear regression analyses showed that the AC and CC CYP7A1 genotypes accounted for 5.2 and 6.2% of triglyceride concentration during follow-up and adjusted percent of change of triglyceride concentration, respectively. The present study provides evidence that -278A>C polymorphism in the CYP7A1 gene can modify triglyceride concentrations in response to a reduced fat diet in a dyslipidemic male population. This gene represents a potential locus for a nutrigenetic directed approach.
Resumo:
Recombinant human thyrotropin (rhTSH) reduces the activity of radioiodine required to treat multinodular goiter (MNG), but acute airway compression can be a life-threatening complication. In this prospective, randomized, double-blind, placebo-controlled study, we assessed the efficacy and safety (including airway compression) of different doses of rhTSH associated with a fixed activity of 131I for treating MNG. Euthyroid patients with MNG (69.3 ± 62.0 mL, 20 females, 2 males, 64 ± 7 years) received 0.1 mg (group I, N = 8) or 0.01 mg (group II, N = 6) rhTSH or placebo (group III, N = 8), 24 h before 1.11 GBq 131I. Radioactive iodine uptake was determined at baseline and 24 h after rhTSH and thyroid volume (TV, baseline and 6 and 12 months after treatment) and tracheal cross-sectional area (TCA, baseline and 2, 7, 180, and 360 days after rhTSH) were determined by magnetic resonance; antithyroid antibodies and thyroid hormones were determined at frequent intervals. After 6 months, TV decreased significantly in groups I (28.5 ± 17.6%) and II (21.6 ± 17.8%), but not in group III (2.7 ± 15.3%). After 12 months, TV decreased significantly in groups I (36.7 ± 18.1%) and II (37.4 ± 27.1%), but not in group III (19.0 ± 24.3%). No significant changes in TCA were observed. T3 and free T4 increased transiently during the first month. After 12 months, 7 patients were hypothyroid (N = 3 in group I and N = 2 in groups II and III). rhTSH plus a 1.11-GBq fixed 131I activity did not cause acute or chronic changes in TCA. After 6 and 12 months, TV reduction was more pronounced among patients treated with rhTSH plus 131I.
Resumo:
Subclinical hypothyroidism (SH) patients present cardiopulmonary, vascular and muscle dysfunction, but there is no consensus about the benefits of levothyroxine (L-T4) intervention on cardiopulmonary performance during exercise. The aim of the present study was to investigate the effects of L-T4 on cardiopulmonary exercise reserve and recovery in SH patients. Twenty-three SH women, 44 (40-50) years old, were submitted to two ergospirometry tests, with an interval of 6 months of normalization of thyroid-stimulating hormone (TSH) levels (L-T4 replacement group) or simple observation (TSH = 6.90 μIU/mL; L-T4 = 1.02 ng/dL). Patients with TSH >10 μIU/mL were excluded from the study to assure that they would receive treatment in this later stage of SH. Twenty 30- to 57-year-old women with no thyroid dysfunction (TSH = 1.38 μIU/mL; L-T4 = 1.18 ng/dL) were also evaluated. At baseline, lower values of gas exchange ratio reserve (0.24 vs 0.30; P < 0.05) were found for SH patients. The treated group presented greater variation than the untreated group for pulmonary ventilation reserve (20.45 to 21.60 L/min; median variation = 5.2 vs 25.09 to 22.45 L/min; median variation = -4.75, respectively) and for gas exchange ratio reserve (0.19 to 0.27; median variation = 0.06 vs 0.28 to 0.18; median variation = -0.08, respectively). There were no relevant differences in cardiopulmonary recovery for either group at baseline or after follow-up. In the sample studied, L-T4 replacement improved exercise cardiopulmonary reserve, but no modification was found in recovery performance after exercise during this period of analysis.
Resumo:
The maxilla and masseter muscles are components of the stomatognathic system involved in chewing, which is frequently affected by physical forces such as gravity, and by dental, orthodontic and orthopedic procedures. Thyroid hormones (TH) are known to regulate the expression of genes that control bone mass and the oxidative properties of muscles; however, little is known about the effects of TH on the stomatognathic system. This study investigated this issue by evaluating: i) osteoprotegerin (OPG) and osteopontine (OPN) mRNA expression in the maxilla and ii) myoglobin (Mb) mRNA and protein expression, as well as fiber composition of the masseter. Male Wistar rats (~250 g) were divided into thyroidectomized (Tx) and sham-operated (SO) groups (N = 24/group) treated with T3 or saline (0.9%) for 15 days. Thyroidectomy increased OPG (~40%) and OPN (~75%) mRNA expression, while T3 treatment reduced OPG (~40%) and OPN (~75%) in Tx, and both (~50%) in SO rats. Masseter Mb mRNA expression and fiber type composition remained unchanged, despite the induction of hypo- and hyperthyroidism. However, Mb content was decreased in Tx rats even after T3 treatment. Since OPG and OPN are key proteins involved in the osteoclastogenesis inhibition and bone mineralization, respectively, and that Mb functions as a muscle store of O2 allowing muscles to be more resistant to fatigue, the present data indicate that TH also interfere with maxilla remodeling and the oxidative properties of the masseter, influencing the function of the stomatognathic system, which may require attention during dental, orthodontic and orthopedic procedures in patients with thyroid diseases.
Resumo:
The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.
Resumo:
In order to understand the mechanisms of poor osseointegration following dental implants in type 2 diabetics, it is important to study the biological properties of alveolar bone osteoblasts isolated from these patients. We collected alveolar bone chips under aseptic conditions and cultured them in vitro using the tissue explants adherent method. The biological properties of these cells were characterized using the following methods: alkaline phosphatase (ALP) chemical staining for cell viability, Alizarin red staining for osteogenic characteristics, MTT test for cell proliferation, enzyme dynamics for ALP contents, radio-immunoassay for bone gla protein (BGP) concentration, and ELISA for the concentration of type I collagen (COL-I) in the supernatant. Furthermore, we detected the adhesion ability of two types of cells from titanium slices using non-specific immunofluorescence staining and cell count. The two cell forms showed no significant difference in morphology under the same culture conditions. However, the alveolar bone osteoblasts received from type 2 diabetic patients had slower growth, lower cell activity and calcium nodule formation than the normal ones. The concentration of ALP, BGP and COL-I was lower in the supernatant of alveolar bone osteoblasts received from type 2 diabetic patients than in that received from normal subjects (P < 0.05). The alveolar bone osteoblasts obtained from type 2 diabetic patients can be successfully cultured in vitro with the same morphology and biological characteristics as those from normal patients, but with slower growth and lower concentration of specific secretion and lower combining ability with titanium than normal ones.
Resumo:
Hashimoto’s thyroiditis (HT) is considered to be mediated mainly by Th1 cells, but it is not known whether Graves’ disease (GD) is associated with Th1 or Th2 predominance. Th17 cells, a novel subset of Th cells, play a crucial role in the pathogenesis of various autoimmune disorders. In the present study, the expression of IL-17A and IFN-γ was investigated in patients with HT or GD. mRNA expression of IL-17A and IFN-γ in peripheral blood mononuclear cells (PBMC) from 43 patients with autoimmune thyroid disease (AITD) and in thyroid tissues from 40 AITD patients were measured by real-time qRT-PCR. The protein expression of IL-17A and IL-23p19 was examined by immunohistochemistry in thyroid tissues from 28 AITD patients. The mRNA levels of IL-17A and IFN-γ were higher in both PBMC and thyroid tissues of HT patients than in controls (mRNA levels are reported as the cytokine/β-actin ratio: IL-17 = 13.58- and 2.88-fold change and IFN-γ = 16.54- and 2.74-fold change, respectively, P < 0.05). Also, the mRNA levels of IL-17A and IFN-γ did not differ significantly in GD patients (P > 0.05). The high protein expression of IL-17A (IOD = 15.17 ± 4.8) and IL-23p19 (IOD = 16.84 ± 7.87) in HT was confirmed by immunohistochemistry (P < 0.05). The similar high levels of IL-17A and IFN-γ suggest a mixed response of Th17 and Th1 in HT, where both cells may play important roles in the destruction procedure by cell-mediated cytotoxicity.
Resumo:
The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.
Resumo:
Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.
Resumo:
We investigated whether 6-gingerol affects the maturation and proliferation of osteoblast-like MG63 cells in vitro. Osteoblast-like MG63 cells were treated with 6-gingerol under control conditions, and experimental inflammation was induced by tumor necrosis factor-α (TNF-α). Expression of different osteogenic markers and cytokines was analyzed by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. In addition, alkaline phosphatase (ALP) enzyme activity and biomineralization as markers for differentiation were measured. Treatment with 6-gingerol resulted in insignificant effects on the proliferation rate. 6-Gingerol induced the differentiation of osteoblast-like cells with increased transcription levels of osteogenic markers, upregulated ALP enzyme activity, and enhanced mineralized nodule formation. Stimulation with TNF-α led to enhanced interleukin-6 and nuclear factor-κB expression and downregulated markers of osteoblastic differentiation. 6-Gingerol reduced the degree of inflammation in TNF-α-treated MG-63 cells. In conclusion, 6-gingerol stimulated osteoblast differentiation in normal physiological and inflammatory settings, and therefore, 6-gingerol represents a promising agent for treating osteoporosis or bone inflammation.
Resumo:
The signalling sphingolipid sphingosine-1-phosphate (S1P) is necessary for development of the immune system and vasculature and on a cellular level regulates migration, proliferation and survival. Due to these traits S1P has an important role in cancer biology. It is considered a primarily cancer-promoting factor and the enzyme which produces it, sphingosine kinase (SphK), is often over-expressed in tumours. S1P is naturally present in the blood, lymph, tissue fluids and cell cytoplasm and functions through its cell surface receptors (S1P1-5) and as an intracellular second messenger. Sphingosylphosphorylcholine (SPC) is closely related to S1P and has similar regulatory functions but has not been extensively studied. Both S1P and SPC are able to evoke either stimulatory or inhibitory effects on cancer cells depending on the context. The aim of this thesis work was to study novel regulatory targets of S1P and SPC, which mediate the effects of S1P/SPC signalling on cancer cell behaviour. The investigated targets are the transcription factor hypoxia-inducible factor 1 (HIF-1), the intermediate filament protein vimentin and components of the Hippo signalling pathway. HIF-1 has a central role in cancer biology, as it regulates a multitude of cancer-related genes and is potently activated by intratumoural hypoxia through stabilization of the regulatory subunit HIF-1α. Tumours typically harbour high HIF-1α levels and HIF-1, in turn, facilitates tumour angiogenesis and metastasis and regulates cancer cell metabolism. We found S1P to induce follicular thyroid cancer cell migration in normal oxygen conditions by increasing HIF-1α synthesis and stability and subsequently HIF-1 activity. Vimentin is a central regulator of cell motility and is also commonly over-expressed in cancers. Vimentin filaments form a cytoskeletal network in mesenchymal cells as well as epithelial cancer cells which have gone through epithelial-mesenchymal transition (EMT). Vimentin is heavily involved in cancer cell invasion and gives tumours metastatic potential. We saw both S1P and SPC induce phosphorylation of vimentin monomers and reorganization of the vimentin filament network in breast and anaplastic thyroid cancer cells. We also found vimentin to mediate the anti-migratory effect of S1P/SPC on these cells. The Hippo pathway is a novel signalling cascade which controls cancer-related processes such as cellular proliferation and survival in response to various extracellular signals. The core of the pathway consists of the transcriptional regulators YAP and TAZ, which activate predominantly cancer-promoting genes, and the tumour suppressive kinases Lats1 and Lats2 which inhibit YAP/TAZ. Increased YAP expression and activity has been reported for a wide variety of cancers. We found SPC to regulate Hippo signalling in breast cancer cells in a two-fold manner through effects on phosphorylation status, activity and/or expression of YAP and Lats2. In conclusion, this thesis reveals new details of the signalling function of S1P and SPC and regulation of the central oncogenic factors HIF-1 and vimentin as well as the novel cancer-related pathway Hippo.
Resumo:
Soybean (Glycine ~ (L.) Merr. cv. Harosoy 63) plants inoculated with Rhizobium japonicum were grown in vermiculite in the presence or absence of nitrate fertilization for up to 6 weeks after planting. Overall growth of nodulated plants was enhanced in the presence of nitrate fertilization, while the extent of nodule development was reduced. Although the number of nodules was not affected by nitrate fertilization when plants were grown at a light intensity limiting for photosynthesis, at light intensities approaching or exceeding the light saturation point for photosynthesis, nitrate fertilization resulted in at least a 30% reduction in nodule numbers. The mature, first trifoliate leaf of 21 day old plants was allowed to photoassimi1ate 14C02. One hour after·· the initial exposure to 14C02, the , plants were harvested and the 14C radioactivity was determined in the 80% ethanol-soluble fraction: in. o:rider to assess· "the extent of photoassimilate export and the pattern of distribution of exported 14C. The magnitude of 14C export was not affected by the presence of nitrate fertilization. However, there was a significant effect on the distribution pattern, particularly with regard to the partitioning of 14C-photosynthate between the nodules and the root tissue. In the presence of nitrate fertilization, less than 6% of the exported 14C photosynthate was recovered from the nodules, with much larger amounts (approximately 37%) being recovered from the root tissue. In the absence of nitrate fertilization, recovery of exported 14C-photosynthate from the nodules (19 to 27%) was approximately equal to that from the root tissue (24 to 33%). By initiating- or terminating the applications of nitrate at 14 days of age, it was determined that the period from day 14 to day 21 after planting was particularly significant for the development of nodules initiated earlier. Addition of nitrate fertilization at this time inhibited further nodule development while stimulating plant growth, whereas removal of nitrate fertilization stimulated nodule development. The results obtained are consistent with the hypothesis that nodule development is inhibited by nitrate fertilization through a reduction in the availability of photosynthate to the nodules.
Resumo:
Le transporteur de Na+/ acide monocarboxylique sensible à l’ibuprofène (SMCT1) est exprimé dans la membrane apicale de plusieurs épithélia. Son rôle physiologique dans la glande thyroïde reste cependant obscur mais on présume qu’il pourrait agir comme un transporteur apical d’iode nécessaire pour la synthèse des hormones thyroïdiennes. Récemment, on a montré que SMCT1 possède un courant de fuite anionique sensible à [Na+]e qui permettrait de transporter l’iode de façon électrogénique. Cependant, un efflux d’iode sensible à l’ibuprofène, mais indépendant de la [Na+]e a été aussi observé sur des cultures primaires des thyrocytes porcins, suggérant un autre mécanisme de transport d’iode par SMCT1. Ce travail vise à comprendre les caractéristiques de ce genre de transport en utilisant comme modèle d’expression les ovocytes de Xenopus laevis. Les résultats obtenus des essais de captation d’iode radioactif montrent que SMCT1 présente un transport d’iode sensible à l’ibuprofène de l’ordre de 30nmol/ovocyte/h. Si ce transport est non saturable en iode (0-100 mM), il nécessite du Na+ dans la solution externe. En effet, le remplacement du Na+ extracellulaire par le NMDG inhibe complètement le transport. En outre, on s’est intéressé à exclure la possibilité de différents artefacts. En ayant trouvé que la grande majorité de l’iode radioactif se trouve dans la partie soluble de l’ovocyte, on exclut une liaison non spécifique de l’iode à la membrane cellulaire. Cependant, une bonne proportion de l’iode transporté pourrait être liée à des protéines à l’intérieur de l`ovocyte. En effet, on observe une réduction du transport d’iode dans les ovocytes exprimant SMCT1 de 81,6 ± 2 % en présence de 2 % BSA dans la solution extracellulaire. Également, on écarte la possibilité que le transport d’iode soit le résultat de la surexpression de protéines de transport endogènes dont les canaux chlore. Le transport d’iode semble spécifique à l’expression de SMCT1 et de manière intéressante à l’expression d’un autre transporteur de monocarboxylates, MCT1. L’analyse de l’ensemble des essais, y compris le fait que l’amplitude du transport observé est 20 fois plus grande que celle du courant de fuite nous mène à proposer que SMCT1 puisse transporter l’iode de façon électroneutre. Cependant, le mécanisme par lequel ceci est accompli n’est pas évident à identifier. L’utilisation d’un autre modèle cellulaire serait surement utile pour répondre à cette question.