991 resultados para Thermal emission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a brief investigation of the amplified spontaneous emission and lasing characteristics of Coumarin 540 dye in as many as ten different solvents are reported. It has been found that C 540 dye solutions contained within a rectangular quartz cuvette give laser emission with well resolved equally spaced modes when pumped with a 476 nm beam. The modes were found to originate from the subcavities formed by the plane-parallel walls of the cuvette containing the high-gain medium. While the quantum yield remains a decisive factor, a clear correlation between the total width of the emission spectra and the refractive indices of the solvents of the respective samples has been demonstrated. The well-resolved mode structure exhibited by the emission spectra gives clear evidence of the lasing action taking place in the gain medium, and the number of modes enables us to compare the gain of the media in different samples. A detailed discussion of the solvent effect in the lasing characteristics of C540 in different solutions is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal diffusivity (TD) measurements were performed on some industrially important dyes – auramine O (AO), malachite green and methylene blue (MB) – adsorbed K-10 montmorillonites using photoacoustic method. The TD value for the dye-adsorbed clay mineral was observed to change with a variation in dye concentration. The contribution of the dye towards TD was also determined. The repeatedly adsorbed samples with MB and AO exhibited a lower TD than the single-adsorbed samples. TD values of sintered MB samples were also obtained experimentally. These sintered samples exhibit a higher TD, although they show a trend similar to that of non-sintered pellets. A variation in dye concentration and sintering temperature can be used for tuning the TD value of the clay mineral to the desired level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Ce3+ on the fluorescence emission from CaS:Ce3+ phosphor is studied using X-ray excitation. Apart from the emission in the visible region, the phosphor also shows fluorescence emission in the ultraviolet region. Variation in wavelengths and intensities of these emissions due to change in dopant concentration is also analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of thermal lensing signal as a function of laser power made in Rhodamine B solutions in methanol give clear evidence of two photon absorption process within certain concentration ranges when 488 nm Ar+ laser beam is used as the pump source. Only one photon process is found to occur when 514 nm and 476 nm beams are used as the pump.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in the decay times of the characteristic green emissions at 522.7, 551.3, 549.6, 547.6, 542.2, 540.2, 535.9 and 533.5nm from CaF2 :H03+ with concentration are studied at RT and LNT. A pulsed N2 laser beam of power density 1.5 MW cm-2 is used for the excitation. Temperature dependent concentration quenching of the decay times are observed for all the emission bands. But an increase in the decay time due to the reabsorption process is also observed for a few of the above bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excitation and emission spectra of SrS : Mn : Ce phosphors have been studied in detail at various Mn and Ce concentrations. In order to study the effect of external pressure on phosphors, the samples were pretreated under various pressures. Four bands around 470 nm, 530 nm, 310 nm and 620 nm were observed, when the samples were excited with 265 nm radiation. The effect of pressure is to reduce the fluorescence ability of the phosphors, and the luminescence vanishes above O· 1 ton m-2 pressure. The fluorescence ability, however, can be regained on retiring the sample. The emission mechanism has been attributed to two luminescentcenters in the forbidden gap. An appreciable amount of photocurrent has also been observed for the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the chemisorbed hydroxyl groups on the thermal diffusivity of gama alumina is determined by evaluating the thermal diffusivity at various degassing temperatures and by doping it with rare earth oxide using photoacoustic technique. The thermal diffusivity is found to decrease with the increase in degassing temperature as well as with the increase in the doping concentration of rare earth oxide. This decrease has been attributed to the loss of hydroxyl ion from the y-Al2O3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is the first of its kind in India, where in smoked and thermal processed products have been developed using locally available wood as the source of wood smoke and flavoring and a shelf life of one year has been achieved. Retortable pouches of three layers, both imported and indigenous were found suitable to store thermal processed products. Heat penetration rate is quicker in retort pouches due to their thin profile in comparison to cans and hence the total process time is lesser. The nutritional and sensory attributes of the pouch products are better retained during processing. Hence these products are more acceptable than canned products. lndian vegetarian food products and fish curry products are available in the ready to eat form in the markets. Smoked and thermal processed products have not gained an entry to the market and hence this study will pave an opening for such products. Currently trade in tuna products from India is meager compared to the global trade. ln India proper utilization of tuna resources is yet to be achieved due to the lack of infrastructure for handling and knowledge of value addition. The raw material cost is also less due to the poor quality of the fish when landed. Hence, the availability of such products will help in the trade of tuna products, improving the quality of raw material landing and ultimately realizing a better value to the fishermen and processors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International School of Photonics, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dept.of Instrumentation,Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis entitled Studies on Thermal Structure in the Seas Around India. An attempt is made in this study to document the observed variability of thermal structure, both on seasonal and short-term scales, in the eastern Arabian Sea and southwestern Bay of Bengal, from the spatial and time series data sets from a reasonably strong data base. The present study has certain limitations. The mean temperatures are based on an uneven distribution of data in space and time. Some of the areas, although having a ‘full annual coverage, do not have adequate data for some months. Some portions in the area under study are having data gaps. The consistency and the coherence in the internal wave characteristics could not be examined due to non-availability of adequate data sets. The influence of generating mechanisms; other than winds and tides on the observed internal wave fields could not be ascertained due to lack of data. However, a comprehensive and intensive data collection can overcome these limitations. The deployment of moored buoys with arrays of sensors at different depths at some important locations for about 5 to 10 years can provide intensive and extensive data sets. This strong data base can afford to address the short-term and seasonal variability of thermal field and understand in detail the individual and collective influences of various physical and dynamical mechanisms responsible for such variability.