941 resultados para Textual information processing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Feature selection is important in medical field for many reasons. However, selecting important variables is a difficult task with the presence of censoring that is a unique feature in survival data analysis. This paper proposed an approach to deal with the censoring problem in endovascular aortic repair survival data through Bayesian networks. It was merged and embedded with a hybrid feature selection process that combines cox's univariate analysis with machine learning approaches such as ensemble artificial neural networks to select the most relevant predictive variables. The proposed algorithm was compared with common survival variable selection approaches such as; least absolute shrinkage and selection operator LASSO, and Akaike information criterion AIC methods. The results showed that it was capable of dealing with high censoring in the datasets. Moreover, ensemble classifiers increased the area under the roc curves of the two datasets collected from two centers located in United Kingdom separately. Furthermore, ensembles constructed with center 1 enhanced the concordance index of center 2 prediction compared to the model built with a single network. Although the size of the final reduced model using the neural networks and its ensembles is greater than other methods, the model outperformed the others in both concordance index and sensitivity for center 2 prediction. This indicates the reduced model is more powerful for cross center prediction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Supply chains comprise of complex processes spanning across multiple trading partners. The various operations involved generate large number of events that need to be integrated in order to enable internal and external traceability. Further, provenance of artifacts and agents involved in the supply chain operations is now a key traceability requirement. In this paper we propose a Semantic web/Linked data powered framework for the event based representation and analysis of supply chain activities governed by the EPCIS specification. We specifically show how a new EPCIS event type called "Transformation Event" can be semantically annotated using EEM - The EPCIS Event Model to generate linked data, that can be exploited for internal event based traceability in supply chains involving transformation of products. For integrating provenance with traceability, we propose a mapping from EEM to PROV-O. We exemplify our approach on an abstraction of the production processes that are part of the wine supply chain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The current study was designed to build on and extend the existing knowledge base of factors that cause, maintain, and influence child molestation. Theorized links among the type of offender and the offender's levels of moral development and social competence in the perpetration of child molestation were investigated. The conceptual framework for the study is based on the cognitive developmental stages of moral development as proposed by Kohlberg, the unified theory, or Four-Preconditions Model, of child molestation as proposed by Finkelhor, and the Information-Processing Model of Social Skills as proposed by McFall. The study sample consisted of 127 adult male child molesters participating in outpatient group therapy. All subjects completed a Self-Report Questionnaire which included questions designed to obtain relevant demographic data, questions similar to those used by the researchers for the Massachusetts Treatment Center: Child Molester Typology 3's social competency dimension, the Defining Issues Test (DIT) short form, the Social Avoidance and Distress Scale (SADS), the Rathus Assertiveness Schedule (RAS), and the Questionnaire Measure of Empathic Tendency (Empathy Scale). Data were analyzed utilizing confirmatory factor analysis, t-tests, and chi-square statistics. Partial support was found for the hypothesis that moral development is a separate but correlated construct from social competence. As predicted, although the actual mean score differences were small, a statistically significant difference was found in the current study between the mean DITP scores of the subject sample and that of the general male population, suggesting that child molesters, as a group, function at a lower level of moral development than does the general male population, and the situational offenders in the study sample demonstrated a statistically significantly higher level of moral development than the preferential offenders. The data did not support the hypothesis that situational offenders will demonstrate lower levels of social competence than preferential offenders. Relatively little significance is placed on this finding, however, because the measure for the social competency variable was likely subject to considerable measurement error in that the items used as indicators were not clearly defined. The last hypothesis, which involved the potential differences in social anxiety, assertion skills, and empathy between the situational and preferential offender types, was not supported by the data. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Query processing is a commonly performed procedure and a vital and integral part of information processing. It is therefore important and necessary for information processing applications to continuously improve the accessibility of data sources as well as the ability to perform queries on those data sources. ^ It is well known that the relational database model and the Structured Query Language (SQL) are currently the most popular tools to implement and query databases. However, a certain level of expertise is needed to use SQL and to access relational databases. This study presents a semantic modeling approach that enables the average user to access and query existing relational databases without the concern of the database's structure or technicalities. This method includes an algorithm to represent relational database schemas in a more semantically rich way. The result of which is a semantic view of the relational database. The user performs queries using an adapted version of SQL, namely Semantic SQL. This method substantially reduces the size and complexity of queries. Additionally, it shortens the database application development cycle and improves maintenance and reliability by reducing the size of application programs. Furthermore, a Semantic Wrapper tool illustrating the semantic wrapping method is presented. ^ I further extend the use of this semantic wrapping method to heterogeneous database management. Relational, object-oriented databases and the Internet data sources are considered to be part of the heterogeneous database environment. Semantic schemas resulting from the algorithm presented in the method were employed to describe the structure of these data sources in a uniform way. Semantic SQL was utilized to query various data sources. As a result, this method provides users with the ability to access and perform queries on heterogeneous database systems in a more innate way. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A methodology for formally modeling and analyzing software architecture of mobile agent systems provides a solid basis to develop high quality mobile agent systems, and the methodology is helpful to study other distributed and concurrent systems as well. However, it is a challenge to provide the methodology because of the agent mobility in mobile agent systems.^ The methodology was defined from two essential parts of software architecture: a formalism to define the architectural models and an analysis method to formally verify system properties. The formalism is two-layer Predicate/Transition (PrT) nets extended with dynamic channels, and the analysis method is a hierarchical approach to verify models on different levels. The two-layer modeling formalism smoothly transforms physical models of mobile agent systems into their architectural models. Dynamic channels facilitate the synchronous communication between nets, and they naturally capture the dynamic architecture configuration and agent mobility of mobile agent systems. Component properties are verified based on transformed individual components, system properties are checked in a simplified system model, and interaction properties are analyzed on models composing from involved nets. Based on the formalism and the analysis method, this researcher formally modeled and analyzed a software architecture of mobile agent systems, and designed an architectural model of a medical information processing system based on mobile agents. The model checking tool SPIN was used to verify system properties such as reachability, concurrency and safety of the medical information processing system. ^ From successful modeling and analyzing the software architecture of mobile agent systems, the conclusion is that PrT nets extended with channels are a powerful tool to model mobile agent systems, and the hierarchical analysis method provides a rigorous foundation for the modeling tool. The hierarchical analysis method not only reduces the complexity of the analysis, but also expands the application scope of model checking techniques. The results of formally modeling and analyzing the software architecture of the medical information processing system show that model checking is an effective and an efficient way to verify software architecture. Moreover, this system shows a high level of flexibility, efficiency and low cost of mobile agent technologies. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this phenomenological study was to describe how Colombian adult English language learners (ELL) select and use language learning strategies (LLS). This study used Oxford’s (1990a) taxonomy for LLS as its theoretical framework. Semi-structured interviews and a focus group interview, were conducted, transcribed, and analyzed for 12 Colombian adult ELL. A communicative activity known as strip story (Gibson, 1975) was used to elicit participants’ use of LLS. This activity preceded the focus group session. Additionally, participants’ reflective journals were collected and analyzed. Data were analyzed using inductive, deductive, and comparative analyses. Four themes emerged from the inductive analysis of the data: (a) learning conditions, (b) problem-solving resources, (c) information processing, and (d) target language practice. Oxford’s classification of LLS was used as a guide in deductively analyzing data concerning the participants’ experiences. The deductive analysis revealed that participants do not use certain strategies included in Oxford’s taxonomy at the third level. For example, semantic mapping, or physical response or sensation was not reported by participants. The findings from the inductive and deductive analyses were then compared to look for patterns and answers to the research questions. The comparative analysis revealed that participants used additional LLS that are not included in Oxford’s taxonomy. Some examples of these strategies are: using sound transcription in native language and help from children. The study was conducted at the MDC InterAmerican campus in South Florida, one of the largest Hispanic-influenced communities in the U.S. Based on the findings from this study, the researcher proposed a framework to study LLS that includes both external (i.e., learning context, community) and internal (i.e., culture, prior education) factors that influence the selection and use of LLS. The findings from this study imply that given the importance of the both external and internal factors in learners’ use of LLS, these factors should be considered for inclusion in any study of language learner strategies use by adult learners. Implications for teaching and learning as well as recommendations for further research are provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While most studies take a dyadic view when examining the environmental difference between the home country of a multinational enterprise (MNE) and a particular foreign country, they ignore that an MNE is managing a network of subsidiaries embedded in diverse environments. Additionally, neither the impacts of global environments on top executives nor the effects of top executives’ capabilities to handle institutional complexity are fully explored. Thus, using a three-essay format, this dissertation tried to fill these gaps by addressing the effects of institutional complexity and top management characteristics on top executive compensation and firm performance. ^ Essay 1 investigated the impact of an MNE’s institutional complexity, or the diversity of national institutions facing an MNE’s network of subsidiaries, on the top management team (TMT) compensation. This essay proposed that greater political and cultural complexity leads to not only greater TMT total compensation but also to a greater portion of TMT compensation linked with long-term performance. The arguments are supported in this essay by using an unbalanced panel dataset including 296 U.S. firms with 1,340 observations. ^ Essay 2 explored TMT social capital and its moderating role on value creation and appropriation by the chief executive officer (CEO). Using a sample with 548 U.S. firms and 2,010 observations, it found that greater TMT social capital does facilitate the effects of CEO intellectual capital and social capital on firm growth. Finally, essay 3 examined the performance implications for the fit between managerial information-processing capabilities and institutional complexity. It proposed that institutional complexity is associated with the needs of information-processing. On the other hand, smaller TMT turnover and larger TMT size reflect larger managerial information-processing capabilities. Consequently, superior performance is achieved by the match among institutional complexity, TMT turnover, and TMT size. All hypotheses in essay 3 are supported in a sample of 301 U.S. firms and 1,404 observations. ^ To conclude, this dissertation advances and extends our knowledge on the roles of institutional environments and top executives on firm performance and top executive compensation.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as ƒ-test is performed during each node's split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bio-systems are inherently complex information processing systems. Furthermore, physiological complexities of biological systems limit the formation of a hypothesis in terms of behavior and the ability to test hypothesis. More importantly the identification and classification of mutation in patients are centric topics in today's cancer research. Next generation sequencing (NGS) technologies can provide genome-wide coverage at a single nucleotide resolution and at reasonable speed and cost. The unprecedented molecular characterization provided by NGS offers the potential for an individualized approach to treatment. These advances in cancer genomics have enabled scientists to interrogate cancer-specific genomic variants and compare them with the normal variants in the same patient. Analysis of this data provides a catalog of somatic variants, present in tumor genome but not in the normal tissue DNA. In this dissertation, we present a new computational framework to the problem of predicting the number of mutations on a chromosome for a certain patient, which is a fundamental problem in clinical and research fields. We begin this dissertation with the development of a framework system that is capable of utilizing published data from a longitudinal study of patients with acute myeloid leukemia (AML), who's DNA from both normal as well as malignant tissues was subjected to NGS analysis at various points in time. By processing the sequencing data at the time of cancer diagnosis using the components of our framework, we tested it by predicting the genomic regions to be mutated at the time of relapse and, later, by comparing our results with the actual regions that showed mutations (discovered at relapse time). We demonstrate that this coupling of the algorithm pipeline can drastically improve the predictive abilities of searching a reliable molecular signature. Arguably, the most important result of our research is its superior performance to other methods like Radial Basis Function Network, Sequential Minimal Optimization, and Gaussian Process. In the final part of this dissertation, we present a detailed significance, stability and statistical analysis of our model. A performance comparison of the results are presented. This work clearly lays a good foundation for future research for other types of cancer.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

What constitutes effective corporate governance? Which director characteristics render boards effective at positively influencing firm-level performance outcomes? This dissertation examines these questions by taking a multilevel, multidisciplinary approach to corporate governance. I explore the individual-, team-, and firm- level factors that enable directors to serve effectively as strategic resources during international expansion. I argue that directors' international experience improves their ability to serve as effective strategic consultants and resource providers to firms during the complex internationalization process. However, unlike prior research, which tends to assume that directors with the potential to provide important resources uniformly do so, I acknowledge contextual factors (i.e. board cohesiveness, strategic relevance of directors' experience) that affect their propensity to actually influence outcomes. I explore these issues in three essays: one review essay and two empirical essays.^ In the first empirical essay, I integrate resource dependence theory with insights from social-psychological research to explore the influence of board capital on firms' cross-border M&A performance. Using a sample of cross-border M&As completed by S&P 500 firms from 2004-2009, I find evidence that directors' depth of international experience is associated with superior pre-deal outcomes. This suggests that boards' deep, market-specific knowledge is valuable during the target selection phase. I further find that directors' breadth of international experience is associated with superior post-deal performance, suggesting that these directors' global mindset helps firms in the post-M&A integration phase. I also find that these relationships are positively moderated by board cohesiveness, measured by boards' internal social ties.^ In the second empirical essay, I explore the boundary conditions of international board capital by examining how the characteristics of firms' internationalization strategy moderate the relationship between board capital and firm performance. Using a panel of 377 S&P 500 firms observed from 2004-2011, I find that boards' depth of international experience and social capital are more important during early stages of internationalization, when firms tend to lack market knowledge and legitimacy in the host markets. On the other hand, I find that breadth of international experience has a stronger relationship with performance when firms' have higher scope of internationalization, when information-processing demands are higher.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to determine the effects of participating in an existing study skills course, developed for use with a general college population, on the study strategies and attitudes of college students with learning disabilities. This study further investigated whether there would be differential effectiveness for segregated and mainstreamed sections of the course.^ The sample consisted of 42 students with learning disabilities attending a southeastern university. Students were randomly assigned to either a segregated or mainstreamed section of the study skills course. In addition, a control group consisted of students with learning disabilities who received no study skills instruction.^ All subjects completed the Learning and Study Strategies Inventory (LASSI) before and after the study skills course. The subjects in the segregated group showed significant improvement on six of the 10 scales of the LASSI: Time Management, Concentration, Information Processing, Selecting Main Ideas, Study Aids, and Self Testing. Subjects in the mainstreamed section showed significant improvement on five scales: Anxiety, Selecting Main Ideas, Study Aids, Self Testing, and Test Strategies. The subjects in the control group did not significantly improve on any of the scales.^ This study showed that college students with learning disabilities improved their study strategies and attitudes by participating in a study skills course designed for a general student population. Further, these students benefitted whether by taking the course only with other students with learning disabilities, or by taking the course in a mixed group of students with or without learning disabilities. These results have important practical implications in that it appears that colleges can use existing study skills courses without having to develop special courses and schedules of course offerings targeted specifically for students with learning disabilities. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Information processing in the human brain has always been considered as a source of inspiration in Artificial Intelligence; in particular, it has led researchers to develop different tools such as artificial neural networks. Recent findings in Neurophysiology provide evidence that not only neurons but also isolated and networks of astrocytes are responsible for processing information in the human brain. Artificial neural net- works (ANNs) model neuron-neuron communications. Artificial neuron-glia networks (ANGN), in addition to neuron-neuron communications, model neuron-astrocyte con- nections. In continuation of the research on ANGNs, first we propose, and evaluate a model of adaptive neuro fuzzy inference systems augmented with artificial astrocytes. Then, we propose a model of ANGNs that captures the communications of astrocytes in the brain; in this model, a network of artificial astrocytes are implemented on top of a typical neural network. The results of the implementation of both networks show that on certain combinations of parameter values specifying astrocytes and their con- nections, the new networks outperform typical neural networks. This research opens a range of possibilities for future work on designing more powerful architectures of artificial neural networks that are based on more realistic models of the human brain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We theoretically study the resonance fluorescence spectrum of a three-level quantum emitter coupled to a spherical metallic nanoparticle. We consider the case that the quantum emitter is driven by a single laser field along one of the optical transitions. We show that the development of the spectrum depends on the relative orientation of the dipole moments of the optical transitions in relation to the metal nanoparticle. In addition, we demonstrate that the location and width of the peaks in the spectrum are strongly modified by the exciton-plasmon coupling and the laser detuning, allowing to achieve controlled strongly subnatural spectral line. A strong antibunching of the fluorescent photons along the undriven transition is also obtained. Our results may be used for creating a tunable source of photons which could be used for a probabilistic entanglement scheme in the field of quantum information processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Performing experiments on small-scale quantum computers is certainly a challenging endeavor. Many parameters need to be optimized to achieve high-fidelity operations. This can be done efficiently for operations acting on single qubits, as errors can be fully characterized. For multiqubit operations, though, this is no longer the case, as in the most general case, analyzing the effect of the operation on the system requires a full state tomography for which resources scale exponentially with the system size. Furthermore, in recent experiments, additional electronic levels beyond the two-level system encoding the qubit have been used to enhance the capabilities of quantum-information processors, which additionally increases the number of parameters that need to be controlled. For the optimization of the experimental system for a given task (e.g., a quantum algorithm), one has to find a satisfactory error model and also efficient observables to estimate the parameters of the model. In this manuscript, we demonstrate a method to optimize the encoding procedure for a small quantum error correction code in the presence of unknown but constant phase shifts. The method, which we implement here on a small-scale linear ion-trap quantum computer, is readily applicable to other AMO platforms for quantum-information processing.