891 resultados para Textile printing.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A specific protein exhibiting immunological cross-reactivity with chicken riboflavin carrier protein has been purified to homogeneity from human amniotic fluid by use of ion-exchange and affinity chromatography. The protein is similar to its avian counterpart in terms of molecular size, distribution of 125I-labelled tryptic peptides during finger printing, and preferential binding to riboflavin. Immunologically, they are homologous since most of the monoclonal antibodies raised against the avian protein cross-react with the purified human vitamin carrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyaniline (PANI) is one of the most extensively used conjugated polymers in the design of electrochemical sensors. In this study, we report electrochemical dye detection based on PANI for the adsorption of both anionic and cationic dyes from solution. The inherent property of PANI to adsorb dyes has been explored for the development of electrochemical detection of dye in solution. The PANI film was grown on electrode via electrochemical polymerization. The as grown PANI film could easily adsorb the dye in the electrolyte solution and form an insulating layer on the PANI coated electrode. As a result, the current intensity of the PANI film was significantly altered. Furthermore, PANI coated stainless steel (SS) electrodes show a change in the current intensity of Fe2+/Fe3+ redox peaks due to the addition of dye in electrolyte solution. PANI films coated on both Pt electrodes and non-expensive SS electrodes showed the concentration of dye adsorbed is directly proportional to the current intensity or potential shift and thus can be used for the quantitative detection of textile dyes at very low concentrations. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal stencils are well known in electronics printing application such as for dispensing solder paste for surface mounting, printing embedded passive elements in multilayer structures, etc. For microprinting applications using stencils, the print quality depends on the smoothness of the stencil aperture and its dimensional accuracy, which in turn are invariably related to the method used to manufacture the stencils. In this paper, fabrication of metal stencils using a photo-defined electrically assisted etching method is described. Apertures in the stencil were made in neutral electrolyte using three different types of impressed current, namely, dc, pulsed dc, and periodic pulse reverse (PPR). Dimensional accuracy and wall smoothness of the etched apertures in each of the current waveforms were compared. Finally, paste transfer efficiency of the stencil obtained using PPR was calculated and compared with those of a laser-cut electropolished stencil. It is observed that the stencil fabricated using current in PPR waveform has better dimensional accuracy and aperture wall smoothness than those obtained with dc and pulsed dc. From the paste transfer efficiency experiment, it is concluded that photo-defined electrically assisted etching method can provide an alternate route for fabrication of metal stencils for future microelectronics printing applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the possibility of finger printing a strongly interacting W boson sector which is consistent with present day LHC searches at the ILC with longitudinal as well as transversely polarized electron and positron beams. We account for the final state interaction using a suitable Omnes formalism in terms of a plausible resonance description, and carry out thorough analyses of cross sections, asymmetries and angular distributions of the W's. We carry out a comparison with other extensions of the Standard Model, where heavy additional Z' bosons arise naturally. We also consider the effect of the strong final state interaction on a correlation that depends on (phi(-) -phi(+)),where the phi-(+) are the azimuthal angles of decay leptons, and find that it is a useful discriminant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We fabricated a reflectance based sensor which relies on the diffraction pattern generated from a bio-microarray where an underlying thin film structure enhances the diffracted intensity from molecular layers. The zero order diffraction represents the background signal and the higher orders represent the phase difference between the array elements and the background. By taking the differential ratio of the first and zero order diffraction signals we get a quantitative measure of molecular binding while simultaneously rejecting common mode fluctuations. We improved the signal-to-noise ratio by an order of magnitude with this ratiometric approach compared to conventional single channel detection. In addition, we use a lithography based approach for fabricating microarrays which results in spot sizes as small as 5 micron diameter unlike the 100 micron spots from inkjet printing and is therefore capable of a high degree of multiplexing. We will describe the real-time measurement of adsorption of charged polymers and bulk refractometry using this technique. The lack of moving parts for point scanning of the microarray and the differential ratiometric measurements using diffracted orders from the same probe beam allows us to make real-time measurements in spite of noise arising from thermal or mechanical fluctuations in the fluid sample above the sensor surface. Further, the lack of moving parts leads to considerable simplification in the readout hardware permitting the use of this technique in compact point of care sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the last decade, there is a growing need for patterned biomolecules for various applications ranging from diagnostic devices to enabling fundamental biological studies with high throughput. Protein arrays facilitate the study of protein-protein, protein-drug or protein-DNA interactions as well as highly multiplexed immunosensors based on antibody-antigen recognition. Protein microarrays are typically fabricated using piezoelectric inkjet printing with resolution limit of similar to 70-100 mu m limiting the array density. A considerable amount of research has been done on patterning biomolecules using customised biocompatible photoresists. Here, a simple photolithographic process for fabricating protein microarrays on a commercially available diazo-naphthoquinone-novolac-positive tone photoresist functionalised with 3-aminopropyltriethoxysilane is presented. The authors demonstrate that proteins immobilised using this procedure retain their activity and therefore form functional microarrays with the array density limited only by the resolution of lithography, which is more than an order of magnitude compared with inkjet printing. The process described here may be useful in the integration of conventional semiconductor manufacturing processes with biomaterials relevant for the creation of next-generation bio-chips.