916 resultados para Tensor Encoding
Resumo:
We constructed a novel autonomously replicating gene expression shuttle vector, with the aim of developing a system for transiently expressing proteins at levels useful for commercial production of vaccines and other proteins in plants. The vector, pRIC, is based on the mild strain of the geminivirus Bean yellow dwarf virus (BeYDV-m) and is replicationally released into plant cells from a recombinant Agrobacterium tumefaciens Ti plasmid. pRIC differs from most other geminivirus-based vectors in that the BeYDV replication-associated elements were included in cis rather than from a co-transfected plasmid, while the BeYDV capsid protein (CP) and movement protein (MP) genes were replaced by an antigen encoding transgene expression cassette derived from the non-replicating A. tumefaciens vector, pTRAc. We tested vector efficacy in Nicotiana benthamiana by comparing transient cytoplasmic expression between pRIC and pTRAc constructs encoding either enhanced green fluorescent protein (EGFP) or the subunit vaccine antigens, human papillomavirus subtype 16 (HPV-16) major CP L1 and human immunodeficiency virus subtype C p24 antigen. The pRIC constructs were amplified in planta by up to two orders of magnitude by replication, while 50% more HPV-16 L1 and three- to seven-fold more EGFP and HIV-1 p24 were expressed from pRIC than from pTRAc. Vector replication was shown to be correlated with increased protein expression. We anticipate that this new high-yielding plant expression vector will contribute towards the development of a viable plant production platform for vaccine candidates and other pharmaceuticals. © 2009 Blackwell Publishing Ltd.
Resumo:
HIV-1 Pr55 Gag virus-like particles (VLPs) are strong immunogens with potential as candidate HIV vaccines. VLP immunogenicity can be broadened by making chimaeric Gag molecules: however, VLPs incorporating polypeptides longer than 200 aa fused in frame with Gag have not yet been reported. We constructed a range of gag-derived genes encoding in-frame C-terminal fusions of myristoylation-competent native Pr55Gag and p6-truncated Gag (Pr50Gag) to test the effects of polypeptide length and sequence on VLP formation and morphology, in an insect cell expression system. Fused sequences included a modified reverse transcriptase-Tat-Nef fusion polypeptide (RTTN, 778 aa), and truncated versions of RTTN ranging from 113 aa to 450 aa. Baculovirus-expressed chimaeric proteins were examined by western blot and electron microscopy. All chimaeras formed VLPs which could be purified by sucrose gradient centrifugation. VLP diameter increased with protein MW, from ∼100 nm for Pr55Gag to ∼250 nm for GagRTTN. The presence or absence of the Gag p6 region did not obviously affect VLP formation or appearance. GagRT chimaeric particles were successfully used in mice to boost T-cell responses to Gag and RT that were elicited by a DNA vaccine encoding a GagRTTN polypeptide, indicating the potential of such chimaeras to be used as candidate HIV vaccines. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ~2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94% genome-wide sequence identity as a strain demarcation threshold, with isolates sharing > 94% identity belonging to the same strain, and strain subtypes sharing> 98% identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed. © 2011 SGM.
Resumo:
Altered expression of the INT6 gene, encoding the e subunit of the translational initiation factor eIF3, occurs in human breast cancers, but how INT6 relates to carcinogenesis remains unestablished. Here, we show that INT6 is involved in the DNA damage response. INT6 was required for cell survival following γ-irradiation and G(2)-M checkpoint control. RNA interference-mediated silencing of INT6 reduced phosphorylation of the checkpoint kinases CHK1 and CHK2 after DNA damage. In addition, INT6 silencing prevented sustained accumulation of ataxia telangiectasia mutated (ATM) at DNA damage sites in cells treated with γ-radiation or the radiomimetic drug neocarzinostatin. Mechanistically, this result could be explained by interaction of INT6 with ATM, which together with INT6 was recruited to the sites of DNA damage. Finally, INT6 silencing also reduced ubiquitylation events that promote retention of repair proteins at DNA lesions. Accordingly, accumulation of the repair factor BRCA1 was defective in the absence of INT6. Our findings reveal unexpected and striking connections of INT6 with ATM and BRCA1 and suggest that the protective action of INT6 in the onset of breast cancers relies on its involvement in the DNA damage response.
Resumo:
The aim of this paper is to provide a comparison of various algorithms and parameters to build reduced semantic spaces. The effect of dimension reduction, the stability of the representation and the effect of word order are examined in the context of the five algorithms bearing on semantic vectors: Random projection (RP), singular value decom- position (SVD), non-negative matrix factorization (NMF), permutations and holographic reduced representations (HRR). The quality of semantic representation was tested by means of synonym finding task using the TOEFL test on the TASA corpus. Dimension reduction was found to improve the quality of semantic representation but it is hard to find the optimal parameter settings. Even though dimension reduction by RP was found to be more generally applicable than SVD, the semantic vectors produced by RP are somewhat unstable. The effect of encoding word order into the semantic vector representation via HRR did not lead to any increase in scores over vectors constructed from word co-occurrence in context information. In this regard, very small context windows resulted in better semantic vectors for the TOEFL test.
Resumo:
This paper is concerned with recent advances in the development of near wall-normal-free Reynolds-stress models, whose single point closure formulation, based on the inhomogeneity direction concept, is completely independent of the distance from the wall, and of the normal to the wall direction. In the present approach the direction of the inhomogeneity unit vector is decoupled from the coefficient functions of the inhomogeneous terms. A study of the relative influence of the particular closures used for the rapid redistribution terms and for the turbulent diffusion is undertaken, through comparison with measurements, and with a baseline Reynolds-stress model (RSM) using geometric wall normals. It is shown that wall-normal-free rsms can be reformulated as a projection on a tensorial basis that includes the inhomogeneity direction unit vector, suggesting that the theory of the redistribution tensor closure should be revised by taking into account inhomogeneity effects in the tensorial integrity basis used for its representation.
Resumo:
Phosphorylation and activation of Akt1 is a crucial signaling event that promotes adipogenesis. However, neither the complex multistep process that leads to activation of Akt1 through phosphorylation at Thr308 and Ser473 nor the mechanism by which Akt1 stimulates adipogenesis is fully understood. We found that the BSD domain–containing signal transducer and Akt interactor (BSTA) promoted phosphorylation of Akt1 at Ser473 in various human and murine cells, and we uncovered a function for the BSD domain in BSTA-Akt1 complex formation. The mammalian target of rapamycin complex 2 (mTORC2) facilitated the phosphorylation of BSTA and its association with Akt1, and the BSTA-Akt1 interaction promoted the association of mTORC2 with Akt1 and phosphorylation of Akt1 at Ser473 in response to growth factor stimulation. Furthermore, analyses of bsta gene-trap murine embryonic stem cells revealed an essential function for BSTA and phosphorylation of Akt1 at Ser473 in promoting adipocyte differentiation, which required suppression of the expression of the gene encoding the transcription factor FoxC2. These findings indicate that BSTA is a molecular switch that promotes phosphorylation of Akt1 at Ser473 and reveal an mTORC2-BSTA-Akt1-FoxC2–mediated signaling mechanism that is critical for adipocyte differentiation.
Resumo:
The Kallikrein (KLK) gene locus encodes a family of serine proteases and is the largest contiguous cluster of protease-encoding genes attributed an evolutionary age of 330 million years. The KLK locus has been implicated as a high susceptibility risk loci in numerous cancer studies through the last decade. The KLK3 gene already has established clinical relevance as a biomarker in prostate cancer prognosis through its encoded protein, prostate-specific antigen. Data mined through genome-wide association studies (GWAS) and next-generation sequencing point to many important candidate single nucleotide polymorphisms (SNPs) in KLK3 and other KLK genes. SNPs in the KLK locus have been found to be associated with several diseases including cancer, hypertension, cardiovascular disease and atopic dermatitis. Moreover, introducing a model incorporating SNPs to improve the efficiency of prostate-specific antigen in detecting malignant states of prostate cancer has been recently suggested. Establishing the functional relevance of these newly-discovered SNPs, and their interactions with each other, through in silico investigations followed by experimental validation, can accelerate the discovery of diagnostic and prognostic biomarkers. In this review, we discuss the various genetic association studies on the KLK loci identified either through candidate gene association studies or at the GWAS and post-GWAS front to aid researchers in streamlining their search for the most significant, relevant and therapeutically promising candidate KLK gene and/or SNP for future investigations.
Resumo:
Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.
Resumo:
The human kallikrein-related peptidases are a subgroup of trypsin and chymotrypsin-like serine peptidases that are characterized by their homology to tissue kallikrein or kallikrein 1 (KLK1) encoded by the KLK1 gene (reviewed in[1-4]). The human KLK locus spans an approximately 320 kb region on chromosome 19q13.3-13.4 and contains fifteen genes encoding KLK1 and fourteen other kallikrein-related peptidases, KLK2-KLK15, which have been named contiguously in the locus in the order of their discovery [5-8] (Figure 606.1). It is the largest contiguous cluster of serine protease encoding genes in the human genome which has evolved from gene duplication of KLK1 and then subsequent reduplication of the newly evolved KLK genes [2]. The high conservation noted for KLK1-KLK3 (62-77%) reflects the proposed duplication of the KLK1 gene that produced the KLK2 gene which further generated the KLK3 gene. In contrast, the newer KLK4-KLK15 proteases share much less similarity, from 24-66%, although strong homology between KLK4 and KLK5, KLK9 and KLK11, and KLK10 and KLK12 suggests these genes are duplications of each other [2]...
Resumo:
Free association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist cuing, primed free association, intralist cuing, and single-item recognition tasks. The findings also show that when a related word is presented to cue the recall of a studied word, the cue activates it in an array of related words that distract and reduce the probability of its selection. The activation of the semantic network produces priming benefits during encoding and search costs during retrieval. In extralist cuing recall is a negative function of cue-to-distracter strength and a positive function of neighborhood density, cue-to-target strength, and target-to cue strength. We show how four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks indicating that the contribution of the semantic network varies with the context provided by the task. We evaluate spreading activation and quantum-like entanglement explanations for the priming effect produced by neighborhood density.
Resumo:
Approximately 2500 fly species comprise the Sarcophagidae family worldwide. The complete mitochondrial genome of the carrion-breeding, forensically important Sarcophaga impatiens Walker (Diptera: Sarcophagidae) from Australia was sequenced. The 15,169 bp circular genome contains the 37 genes found in a typical Metazoan genome: 13 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes. It also contains one non-coding A+T-rich region. The arrangement of the genes was the same as that found in the ancestral insect. All the protein initiation codons are ATN, except for cox1 that begins with TCG (encoding S). The 22 tRNA anticodons of S. impatiens are consistent with those observed in Drosophila yakuba, and all form the typical cloverleaf structure, except for tRNA-Ser(AGN) that lacks the DHU arm. The mitochondrial genome of Sarcophaga presented will be valuable for resolving phylogenetic relationships within the family Sarcophagidae and the order Diptera, and could be used to identify favourable genetic markers for species identifications for forensic purposes.
Resumo:
The increasing demand for mobile video has attracted much attention from both industry and researchers. To satisfy users and to facilitate the usage of mobile video, providing optimal quality to the users is necessary. As a result, quality of experience (QoE) becomes an important focus in measuring the overall quality perceived by the end-users, from the aspects of both objective system performance and subjective experience. However, due to the complexity of user experience and diversity of resources (such as videos, networks and mobile devices), it is still challenging to develop QoE models for mobile video that can represent how user-perceived value varies with changing conditions. Previous QoE modelling research has two main limitations: aspects influencing QoE are insufficiently considered; and acceptability as the user value is seldom studied. Focusing on the QoE modelling issues, two aims are defined in this thesis: (i) investigating the key influencing factors of mobile video QoE; and (ii) establishing QoE prediction models based on the relationships between user acceptability and the influencing factors, in order to help provide optimal mobile video quality. To achieve the first goal, a comprehensive user study was conducted. It investigated the main impacts on user acceptance: video encoding parameters such as quantization parameter, spatial resolution, frame rate, and encoding bitrate; video content type; mobile device display resolution; and user profiles including gender, preference for video content, and prior viewing experience. Results from both quantitative and qualitative analysis revealed the significance of these factors, as well as how and why they influenced user acceptance of mobile video quality. Based on the results of the user study, statistical techniques were used to generate a set of QoE models that predict the subjective acceptability of mobile video quality by using a group of the measurable influencing factors, including encoding parameters and bitrate, content type, and mobile device display resolution. Applying the proposed QoE models into a mobile video delivery system, optimal decisions can be made for determining proper video coding parameters and for delivering most suitable quality to users. This would lead to consistent user experience on different mobile video content and efficient resource allocation. The findings in this research enhance the understanding of user experience in the field of mobile video, which will benefit mobile video design and research. This thesis presents a way of modelling QoE by emphasising user acceptability of mobile video quality, which provides a strong connection between technical parameters and user-desired quality. Managing QoE based on acceptability promises the potential for adapting to the resource limitations and achieving an optimal QoE in the provision of mobile video content.
Resumo:
Robust hashing is an emerging field that can be used to hash certain data types in applications unsuitable for traditional cryptographic hashing methods. Traditional hashing functions have been used extensively for data/message integrity, data/message authentication, efficient file identification and password verification. These applications are possible because the hashing process is compressive, allowing for efficient comparisons in the hash domain but non-invertible meaning hashes can be used without revealing the original data. These techniques were developed with deterministic (non-changing) inputs such as files and passwords. For such data types a 1-bit or one character change can be significant, as a result the hashing process is sensitive to any change in the input. Unfortunately, there are certain applications where input data are not perfectly deterministic and minor changes cannot be avoided. Digital images and biometric features are two types of data where such changes exist but do not alter the meaning or appearance of the input. For such data types cryptographic hash functions cannot be usefully applied. In light of this, robust hashing has been developed as an alternative to cryptographic hashing and is designed to be robust to minor changes in the input. Although similar in name, robust hashing is fundamentally different from cryptographic hashing. Current robust hashing techniques are not based on cryptographic methods, but instead on pattern recognition techniques. Modern robust hashing algorithms consist of feature extraction followed by a randomization stage that introduces non-invertibility and compression, followed by quantization and binary encoding to produce a binary hash output. In order to preserve robustness of the extracted features, most randomization methods are linear and this is detrimental to the security aspects required of hash functions. Furthermore, the quantization and encoding stages used to binarize real-valued features requires the learning of appropriate quantization thresholds. How these thresholds are learnt has an important effect on hashing accuracy and the mere presence of such thresholds are a source of information leakage that can reduce hashing security. This dissertation outlines a systematic investigation of the quantization and encoding stages of robust hash functions. While existing literature has focused on the importance of quantization scheme, this research is the first to emphasise the importance of the quantizer training on both hashing accuracy and hashing security. The quantizer training process is presented in a statistical framework which allows a theoretical analysis of the effects of quantizer training on hashing performance. This is experimentally verified using a number of baseline robust image hashing algorithms over a large database of real world images. This dissertation also proposes a new randomization method for robust image hashing based on Higher Order Spectra (HOS) and Radon projections. The method is non-linear and this is an essential requirement for non-invertibility. The method is also designed to produce features more suited for quantization and encoding. The system can operate without the need for quantizer training, is more easily encoded and displays improved hashing performance when compared to existing robust image hashing algorithms. The dissertation also shows how the HOS method can be adapted to work with biometric features obtained from 2D and 3D face images.
Resumo:
Molecular-level computer simulations of restricted water diffusion can be used to develop models for relating diffusion tensor imaging measurements of anisotropic tissue to microstructural tissue characteristics. The diffusion tensors resulting from these simulations can then be analyzed in terms of their relationship to the structural anisotropy of the model used. As the translational motion of water molecules is essentially random, their dynamics can be effectively simulated using computers. In addition to modeling water dynamics and water-tissue interactions, the simulation software of the present study was developed to automatically generate collagen fiber networks from user-defined parameters. This flexibility provides the opportunity for further investigations of the relationship between the diffusion tensor of water and morphologically different models representing different anisotropic tissues.