900 resultados para Temperate grassland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the relationship between genetic diversity of the subterranean Gansu zokor Myospalax cansus and habitat variability in the Loess Plateau, Qinghai Province, China. We used a combination of geographic information systems and molecular techniques to assess the impact of habitat composition and human activities on the genetic diversity of zokor populations in this semi-natural landscape. Although they occurred relatively infrequently in the landscape, woodland and high-coverage grassland habitats were the main positive contributors to the genetic diversity of zokor populations. Rural residential land, plain agricultural land and low-coverage grassland had a negative effect on genetic diversity. Hilly agricultural land and middle-coverage grassland had little impact on zokor genetic diversity. There were also interactions between some habitat types, that is, habitat types with relatively better quality together promoted conservation of genetic diversity, while the interaction between (among) bad habitat types made situations worse. Finally, habitat diversity, measured as patch richness and Shannon's diversity index, was positively correlated with the genetic diversity. These results demonstrated that: (1) different habitat types had different effects on the genetic diversity of zokor populations and (2) habitat quality and habitat heterogeneity were important in maintaining genetic diversity. Habitat composition was closely related to land use thus emphasizing the importance of human activities on the genetic diversity of subterranean rodent populations in this semi-natural landscape. Although the Gansu zokor was considered to be a pest species in the Loess Plateau, our study provides insights for the management and conservation of other subterranean rodent species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Competitive strategy for resources between Cleistogenes squarrosa (Trin.) Keng which is a dominant species of grasslands degraded by moderate-heavy grazing, and Stipa grandis P. Smirnov, which is a dominant species of ungrazed communities, was studied using a replacement series method in a greenhouse. The knowledge would be helpful in managing grasslands and restoring the degraded C. squarrosa grassland. Although there was neither inter- nor intra-specific competition between the two species when no nutrients were added, intra-specific competition of C. squarrosa was observed and increased with increased nutrient availability and more sulfur (S) was allocated to the aboveground partition of the plant. Relative competitive ability of C. squarrosa was greater than that of S. grandis when nutrients were supplied regardless of S. There was no significant difference between shoot and root competition based on dry matter yields. However, root competition was significantly greater than that of shoot based on S uptake under all treatments. A significant interaction was not observed between shoot and root competition. Therefore, nutrients addition benefits the restoration of degraded grassland of C. squarrosa, which may not exclude S. grandis. Also productivity and forage quality of the community will be increased. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using heterogeneous vegetation in alpine grassland through grazing is a necessary component of deintensification of livestock systems and conservation of natural environments. However, better understanding of the dynamics of animal feeding behaviour would improve pasture and livestock grazing managements, particularly in the early part of the spring season when forage is scarce. The changes in behaviour may improve the use of poor pastures. Then, enhancing management practices may conserve pasture and improve animal productivity. Grazing behaviour over 24 In periods by yaks in different physiological states (lactating, dry and replacement heifers) was recorded in the early, dry and later, germinating period of the spring season. Under conditions of inadequate forage, the physiological state of yaks was not the primary factor affecting their grazing and ruminating behaviour. Forage and sward state affected yaks' grazing and ruminating behaviour to a greater extent. Generally, yaks had higher intake and spent more time grazing and ruminating during the later part of the spring season, following germination of forage, than during the earlier dry part of the season. However, the live weight of yaks was less during pasture germination than during the early dry part of the season because the herbage mass is low, and the yaks have to expend much energy to seek feed at this particular time. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we conducted eddy covariance (EC) measurements of water vapor exchange over a typical steppe in a semi-arid area of the Inner Mongolia Plateau, China. Measurement sites were located within a 25-year-old enclosure with a relatively low leaf area index (similar to 1. 5 m(2) m(-2)) and dominated by Leymus chinensis. Energy balance closure was (H + LE) = 17.09 + 0.69 x (Rn - G) (W/m(2); r(2) = 0.95, n = 6596). Precipitation during the two growing seasons of the study period was similar to the long-term average. The peak evapotranspiration in 2004 was 4 mm d(-1), and 3.5 mm d(-1) in 2003. The maximum latent heat flux was higher than the sensible heat flux, and the sensible heat flux dominated the energy budget at midday during the entire growing season in 2003; latent heat flux was the main consumption component for net radiation during the 2004 growing season. During periods of frozen soil in 2003 and 2004, the sensible heat flux was the primary consumption component for net radiation. The soil heat flux component was similar in 2003 and 2004. The decoupling coefficient (between 0.5 and 0.1) indicates that evapotranspiration was strongly controlled by saturation water vapor pressure deficit (VPD) in this grassland. The results of this research suggest that energy exchange and evapotranspiration were controlled by the phenology of the vegetation and soil water content. In addition, the amount and frequency of rainfall significantly affect energy exchange and evapotranspiration upon the Inner Mongolia plateau. (c) 2007 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The eddy covariance technique provides measurements of net ecosystem exchange (NEE) Of CO2 between the atmosphere and terrestrial ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number Of CO2 eddy flux tower sites. In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai-Tibetan Plateau, China. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland ecosystems in Qinghai-Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key component for the study of the carbon cycle at regional and global scales. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Livestock grazing has long been the most widespread land use on the Qinghai-Tibet Plateau, one of the world's highest ecosystems. However, there has been increasing concern during recent decades because of the rapid increase in livestock numbers. To assess the possible influences of grazing on the vast grassland, a long-term grazing experiment in a shrub meadow on the northern Qinghai-Tibet Plateau was carried out. The experiment included five treatments with different stocking rates and one non-grazing (N) treatment. After 17 years of grazing, treatment differences were clear. The species composition differed markedly between grazing intensities, with a decrease in palatable grass species and an increase in unpalatable forbs at higher grazing intensities. The species richness and species diversity, however, were not significantly different between treatments. Vegetation height decreased significantly at higher grazing intensities. Total above,ground biomass declined considerably and the biomass of forbs increased significantly under the higher grazing intensities. The amount of litter was significantly lower under the higher grazing intensities. The results suggest that long-term grazing alters the species composition, vegetation height and biomass production of the alpine grassland ecosystem without significantly changing species richness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha(-1) during the growing season in the Inner Mongolia steppe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the effect on host plants of defending against herbivores is important in grazing ecology and grassland management. In this study, the morphological and reproductive responses of Caragana microphylla Lam. to grazing sheep were investigated using a 15-year grazing experiment with six stocking rates in the Inner Mongolia steppe of China. Plant height, rachis length, leaflet size, and number of pods decreased significantly, whereas spine density and length increased significantly with increased stocking rate. Significant negative correlations were observed between production of vegetative and reproductive organs and defensive organs, indicating that it is costly for C. microphylla to defend against herbivores and that morphological miniaturization and a tradeoff between production and defense were main responses of C. microphylla to herbivores. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alpine meadow ecosystem on the Qinghai-Tibetan Plateau is characterized by low temperatures because of its high elevation. The low-temperature environment may limit both ecosystem photosynthetic CO2 uptake and ecosystem respiration, and thus affect the net ecosystem CO2 exchange (NEE). We clarified the low-temperature constraint on photosynthesis and respiration in an alpine meadow ecosystem on the northern edge of the plateau using flux measurements obtained by the eddy covariance technique in two growing seasons. When we compared NEE during the two periods, during which the leaf area index and other environmental parameters were similar but the mean temperature differed, we found that NEE from 9 August to 10 September 2001, when the average temperature was low, was greater than that during the same period in 2002, when the average temperature was high, but the ecosystem gross primary production was similar during the two periods. Further analysis showed that ecosystem respiration was significantly higher in 2002 than in 2001 during the study period, as estimated from the relationship between temperature and nighttime ecosystem respiration. The results suggest that low temperature controlled the NEE mainly through its influence on ecosystem respiration. The annual NEE, estimated from 15 January 2002 to 14 January 2003, was about 290 g CO2 m(-2) year(-1). The optimum temperature for ecosystem NEE under light-saturated conditions was estimated to be around 15 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uptake and release of carbon in grassland ecosystems is very critical to the global carbon balance and carbon storage. In this study, the dynamics of net ecosystem CO2 exchange (FNEE) of two grassland ecosystems were observed continuously using the eddy covariance technique during the growing season of 2003. One is the alpine shrub on the Tibet Plateau, and the other is the sem-arid Leymus chinensis steppe in Inner Mongolia of China. It was found that the FNEE of both ecosystems was significantly depressed under high solar radiation. Comprehensive analysis indicates that the depression of FNEE in the L. chinensis steppe was the results of decreased plant photosynthesis and increased ecosystem respiration (R-eco) under high temperature. Soil water stress in addition to the high atmospheric demand under the strong radiation was the primary factor limiting the stomatal conductance. In contrast, the depression of FNEE in the alpine shrub was closely related to the effects of temperature on both photosynthesis and ecosystem respiration, coupled with the reduction of plant photosynthesis due to partial stomatal closure under high temperature at mid-day. The R,c of the alpine shrub was sensitive to soil temperature during high turbulence (u* > 0.2 m s(-1)) but its FNEE decreased markedly when the temperature was higher than the optimal value of about 12 degrees C. Such low optimal temperature contrasted the optimal value (about 20 degrees C) for the steppe, and was likely due to the acclimation of most alpine plants to the long-term low temperature on the Tibet Plateau. We inferred that water stress was the primary factor causing depression of the FNEE in the semi-arid steppe ecosystem, while relative high temperature under strong solar radiation was the main reason for the decrease of FNEE in the alpine shrub. This study implies that different grassland ecosystems may respond differently to climate change in the future. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The meadow ecosystem on the Qinghai-Tibetan Plateau is considered to be sensitive to climate change. An understanding of the alpine meadow ecosystem is therefore important for predicting the response of ecosystems to climate change. In this study, we use the coefficients of variation (Cv) and stability (E) obtained from the Haibei Alpine Meadow Ecosystem Research Station to characterize the ecosystem stability. The results suggest that the net primary production of the alpine meadow ecosystem was more stable (Cv = 13.18%) than annual precipitation (Cv = 16.55%) and annual mean air temperature (Cv= 28.82%). The net primary production was insensitive to either the precipitation (E = 0.0782) or air temperature (E = 0.1113). In summary, the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is much stable. Comparison of alpine meadow ecosystem stability with other five natural grassland ecosystems in Israel and southern African indicates that the alpine meadow ecosystem on the Qinghai-Tibetan Plateau is the most stable ecosystem. The alpine meadow ecosystem with relatively simple structure has high stability, which indicates that community stability is not only correlated with biodiversity and community complicity but also with environmental stability. An average oscillation cycles of 3-4 years existed in annual precipitation, annual mean air temperature, net primary production and the population size of consumers at the Haibei natural ecosystem. The high stability of the alpine meadow ecosystem may be resulting also from the adaptation of the ecosystem to the alpine environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grassland degradation is widespread and severe on the Tibet Plateau. To explore management approaches for sustainable development of degraded and restored ecosystems, we studied the effect of land degradation on species composition, species diversity, and vegetation productivity, and examined the relative influence of various rehabilitation practices (two seeding treatments and a non-seeded natural recovery treatment) on community structure and vegetation productivity in early secondary succession. The results showed: (1) All sedge and grass species of the natural steppe meadow had disappeared from the severely degraded land. The above-ground and root biomass of severely degraded land were only 38 and 14.7%, respectively, of those of the control. So, the original ecosystem has been dramatically altered by land degradation on alpine steppe meadow. (2) Seeding measures may promote above-ground biomass, particularly grass biomass, and ground cover. Except for the grasses seeded, however, other grass and sedge species did not occur after seeding treatments in the sixth year of seeding. Establishment of grasses during natural recovery treatment progressed slowly compared with during seeding treatments. Many annual forbs invaded and established during the 6 years of natural recovery. In addition, there was greater diversity after natural recovery treatment than after seeding treatments. (3) The above-ground biomass after seeding treatment and natural recovery treatment were 114 and 55%, respectively, of that of the control. No significant differences in root biomass occurred among the natural recovery and seeded treatments. Root biomass after rehabilitation treatment was 23-31% that of the control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herbivory and burrowing activity of mammals may influence the species composition and diversity of plant communities. The effect of corridors and holes systems constructed by root vole (Microtus oeconomus Pallas) on the plant species diversity was studied in the habitat of high - mountain meadow (3250 in a.s.l in Qinghai-Tibet Plateau, China). By using grid method, these disturbances were studied on 16 plots (100 cm x 100 cm) distributed in 4 transects in studied area, in August 2000 and 2001. The disturbance intensity index, D, was calculated as the percent of the ground surface disturbed by voles in the study area. Plant species were identified and counted on the same plots. In total 46 plant species were identified - 39% of this number was considered as sensitive to the vole disturbances as their occurrence and/or abundance decreased along the disturbance intensity. Generally, a significantly negative correlation (r = - 0.911 P < 0.01) between vole aboveground disturbances and plant species diversity (H') was found. The results suggest that root vole ground disturbances, especially in the form of actively utilized holes and corridors have significantly negative influence on plant species diversity in high-mountain grassland habitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-scale grassland rehabilitation has been carried out on the severely degraded lands of the Tibetan plateau. The grasslands created provide a useful model for evaluating the recovery of ecosystem properties. The purposes of this research were: (1) to examine the relative influence of various rehabilitation practices on carbon and nitrogen in plants and soils in early secondary succession; and (2) to evaluate the degree to which severely degraded grassland altered plant and soil properties relative to the non-disturbed native community. The results showed: (1) The aboveground tissue C and N content in the control were 105-97 g m(-2) and 3.356gm(-2), respectively. The aboveground tissue C content in the mixed seed treatment, the single seed treatment, the natural recovery treatment and the severely degraded treatment was 137 per cent, 98 per cent, 49 per cent and 38 per cent, respectively, of that in the control. The corresponding aboveground tissue N content was 109 per cent, 84 per cent, 60 per cent and 47 per cent, respectively, of that in the control. (2) Root C and N content in 0-20 cm depths of the control had an 2 2 average 1606 gm(-2) and 30-36 gm(-2) respectively. Root C and N content in the rehabilitation treatments were in the range of 26-36 per cent and 35-53 per cent, while those in the severely degraded treatment were only 17 per cent and 26 per cent of that in the control. (3) In the control the average soil C and N content at 0-20 cm was 11307 gm(-2) and 846 gm(-2), respectively. Soil C content in the uppermost 20 cm in the seeded treatments, the natural recovery treatment and the severely degraded treatment was 67 per cent, 73 per cent and 57 per cent, respectively, while soil N content in the uppermost 20cm was 72 per cent, 82 per cent and 79 per cent, respectively, of that in the control. The severely degraded land was a major C source. Restoring the severely degraded lands to perennial vegetation was an alternative approach to sequestering C in former degraded systems. N was a limiting factor in seeding grassland. It is necessary for sustainable utilization of seeding grassland to supply extra N fertilizer to the soil or to add legume species into the seed mix. Copyright (c) 2005 John Wiley & Sons, Ltd.