899 resultados para Tele communication systems
Resumo:
The continuous and swift progression of both wireless and wired communication technologies in today's world owes its success to the foundational systems established earlier. These systems serve as the building blocks that enable the enhancement of services to cater to evolving requirements. Studying the vulnerabilities of previously designed systems and their current usage leads to the development of new communication technologies replacing the old ones such as GSM-R in the railway field. The current industrial research has a specific focus on finding an appropriate telecommunication solution for railway communications that will replace the GSM-R standard which will be switched off in the next years. Various standardization organizations are currently exploring and designing a radiofrequency technology based standard solution to serve railway communications in the form of FRMCS (Future Railway Mobile Communication System) to substitute the current GSM-R. Bearing on this topic, the primary strategic objective of the research is to assess the feasibility to leverage on the current public network technologies such as LTE to cater to mission and safety critical communication for low density lines. The research aims to identify the constraints, define a service level agreement with telecom operators, and establish the necessary implementations to make the system as reliable as possible over an open and public network, while considering safety and cybersecurity aspects. The LTE infrastructure would be utilized to transmit the vital data for the communication of a railway system and to gather and transmit all the field measurements to the control room for maintenance purposes. Given the significance of maintenance activities in the railway sector, the ongoing research includes the implementation of a machine learning algorithm to detect railway equipment faults, reducing time and human analysis errors due to the large volume of measurements from the field.
Resumo:
The integration of distributed and ubiquitous intelligence has emerged over the last years as the mainspring of transformative advancements in mobile radio networks. As we approach the era of “mobile for intelligence”, next-generation wireless networks are poised to undergo significant and profound changes. Notably, the overarching challenge that lies ahead is the development and implementation of integrated communication and learning mechanisms that will enable the realization of autonomous mobile radio networks. The ultimate pursuit of eliminating human-in-the-loop constitutes an ambitious challenge, necessitating a meticulous delineation of the fundamental characteristics that artificial intelligence (AI) should possess to effectively achieve this objective. This challenge represents a paradigm shift in the design, deployment, and operation of wireless networks, where conventional, static configurations give way to dynamic, adaptive, and AI-native systems capable of self-optimization, self-sustainment, and learning. This thesis aims to provide a comprehensive exploration of the fundamental principles and practical approaches required to create autonomous mobile radio networks that seamlessly integrate communication and learning components. The first chapter of this thesis introduces the notion of Predictive Quality of Service (PQoS) and adaptive optimization and expands upon the challenge to achieve adaptable, reliable, and robust network performance in dynamic and ever-changing environments. The subsequent chapter delves into the revolutionary role of generative AI in shaping next-generation autonomous networks. This chapter emphasizes achieving trustworthy uncertainty-aware generation processes with the use of approximate Bayesian methods and aims to show how generative AI can improve generalization while reducing data communication costs. Finally, the thesis embarks on the topic of distributed learning over wireless networks. Distributed learning and its declinations, including multi-agent reinforcement learning systems and federated learning, have the potential to meet the scalability demands of modern data-driven applications, enabling efficient and collaborative model training across dynamic scenarios while ensuring data privacy and reducing communication overhead.
Resumo:
Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.
Resumo:
Embedded systems are increasingly integral to daily life, improving and facilitating the efficiency of modern Cyber-Physical Systems which provide access to sensor data, and actuators. As modern architectures become increasingly complex and heterogeneous, their optimization becomes a challenging task. Additionally, ensuring platform security is important to avoid harm to individuals and assets. This study primarily addresses challenges in contemporary Embedded Systems, focusing on platform optimization and security enforcement. The initial section of this study delves into the application of machine learning methods to efficiently determine the optimal number of cores for a parallel RISC-V cluster to minimize energy consumption using static source code analysis. Results demonstrate that automated platform configuration is not only viable but also that there is a moderate performance trade-off when relying solely on static features. The second part focuses on addressing the problem of heterogeneous device mapping, which involves assigning tasks to the most suitable computational device in a heterogeneous platform for optimal runtime. The contribution of this section lies in the introduction of novel pre-processing techniques, along with a training framework called Siamese Networks, that enhances the classification performance of DeepLLVM, an advanced approach for task mapping. Importantly, these proposed approaches are independent from the specific deep-learning model used. Finally, this research work focuses on addressing issues concerning the binary exploitation of software running in modern Embedded Systems. It proposes an architecture to implement Control-Flow Integrity in embedded platforms with a Root-of-Trust, aiming to enhance security guarantees with limited hardware modifications. The approach involves enhancing the architecture of a modern RISC-V platform for autonomous vehicles by implementing a side-channel communication mechanism that relays control-flow changes executed by the process running on the host core to the Root-of-Trust. This approach has limited impact on performance and it is effective in enhancing the security of embedded platforms.
Resumo:
Oggigiorno il concetto di informazione è diventato cruciale in fisica, pertanto, siccome la migliore teoria che abbiamo per compiere predizioni riguardo l'universo è la meccanica quantistica, assume una particolare importanza lo sviluppo di una versione quantistica della teoria dell'informazione. Questa centralità è confermata dal fatto che i buchi neri hanno entropia. Per questo motivo, in questo lavoro sono presentati elementi di teoria dell'informazione quantistica e della comunicazione quantistica e alcuni sono illustrati riferendosi a modelli quantistici altamente idealizzati della meccanica di buco nero. In particolare, nel primo capitolo sono forniti tutti gli strumenti quanto-meccanici per la teoria dell'informazione e della comunicazione quantistica. Successivamente, viene affrontata la teoria dell'informazione quantistica e viene trovato il limite di Bekenstein alla quantità di informazione chiudibile entro una qualunque regione spaziale. Tale questione viene trattata utilizzando un modello quantistico idealizzato della meccanica di buco nero supportato dalla termodinamica. Nell'ultimo capitolo, viene esaminato il problema di trovare un tasso raggiungibile per la comunicazione quantistica facendo nuovamente uso di un modello quantistico idealizzato di un buco nero, al fine di illustrare elementi della teoria. Infine, un breve sommario della fisica dei buchi neri è fornito in appendice.
Resumo:
The paper deals with the integration of ROS, in the proprietary environment of the Marchesini Group company, for the control of industrial robotic systems. The basic tools of this open-source software are deeply studied to model a full proprietary Pick and Place manipulator inside it, and to develop custom ROS nodes to calculate trajectories; speaking of which, the URDF format is the standard to represent robots in ROS and the motion planning framework MoveIt offers user-friendly high-level methods. The communication between ROS and the Marchesini control architecture is established using the OPC UA standard; the tasks computed are transmitted offline to the PLC, supervisor controller of the physical robot, because the performances of the protocol don’t allow any kind of active control by ROS. Once the data are completely stored at the Marchesini side, the industrial PC makes the real robot execute a trajectory computed by MoveIt, so that it replicates the behaviour of the simulated manipulator in Rviz. Multiple experiments are performed to evaluate in detail the potential of ROS in the planning of movements for the company proprietary robots. The project ends with a small study regarding the use of ROS as a simulation platform. First, it is necessary to understand how a robotic application of the company can be reproduced in the Gazebo real world simulator. Then, a ROS node extracts information and examines the simulated robot behaviour, through the subscription to specific topics.
Resumo:
The development and maintenance of the sealing of the root canal system is the key to the success of root canal treatment. The resin-based adhesive material has the potential to reduce the microleakage of the root canal because of its adhesive properties and penetration into dentinal walls. Moreover, the irrigation protocols may have an influence on the adhesiveness of resin-based sealers to root dentin. The objective of the present study was to evaluate the effect of different irrigant protocols on coronal bacterial microleakage of gutta-percha/AH Plus and Resilon/Real Seal Self-etch systems. One hundred ninety pre-molars were used. The teeth were divided into 18 experimental groups according to the irrigation protocols and filling materials used. The protocols used were: distilled water; sodium hypochlorite (NaOCl)+eDTA; NaOCl+H3PO4; NaOCl+eDTA+chlorhexidine (CHX); NaOCl+H3PO4+CHX; CHX+eDTA; CHX+ H3PO4; CHX+eDTA+CHX and CHX+H3PO4+CHX. Gutta-percha/AH Plus or Resilon/Real Seal Se were used as root-filling materials. The coronal microleakage was evaluated for 90 days against Enterococcus faecalis. Data were statistically analyzed using Kaplan-Meier survival test, Kruskal-Wallis and Mann-Whitney tests. No significant difference was verified in the groups using chlorhexidine or sodium hypochlorite during the chemo-mechanical preparation followed by eDTA or phosphoric acid for smear layer removal. The same results were found for filling materials. However, the statistical analyses revealed that a final flush with 2% chlorhexidine reduced significantly the coronal microleakage. A final flush with 2% chlorhexidine after smear layer removal reduces coronal microleakage of teeth filled with gutta-percha/AH Plus or Resilon/Real Seal SE.
Resumo:
To evaluate the effectiveness of Reciproc for the removal of cultivable bacteria and endotoxins from root canals in comparison with multifile rotary systems. The root canals of forty human single-rooted mandibular pre-molars were contaminated with an Escherichia coli suspension for 21 days and randomly assigned to four groups according to the instrumentation system: GI - Reciproc (VDW); GII - Mtwo (VDW); GIII - ProTaper Universal (Dentsply Maillefer); and GIV -FKG Race(™) (FKG Dentaire) (n = 10 per group). Bacterial and endotoxin samples were taken with a sterile/apyrogenic paper point before (s1) and after instrumentation (s2). Culture techniques determined the colony-forming units (CFU) and the Limulus Amebocyte Lysate assay was used for endotoxin quantification. Results were submitted to paired t-test and anova. At s1, bacteria and endotoxins were recovered in 100% of the root canals investigated (40/40). After instrumentation, all systems were associated with a highly significant reduction of the bacterial load and endotoxin levels, respectively: GI - Reciproc (99.34% and 91.69%); GII - Mtwo (99.86% and 83.11%); GIII - ProTaper (99.93% and 78.56%) and GIV - FKG Race(™) (99.99% and 82.52%) (P < 0.001). No statistical difference were found amongst the instrumentation systems regarding bacteria and endotoxin removal (P > 0.01). The reciprocating single file, Reciproc, was as effective as the multifile rotary systems for the removal of bacteria and endotoxins from root canals.
Resumo:
We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species.
Resumo:
The aim of this study was to evaluate by photoelastic analysis stress distribution on short and long implants of two dental implant systems with 2-unit implant-supported fixed partial prostheses of 8 mm and 13 mm heights. Sixteen photoelastic models were divided into 4 groups: I: long implant (5 × 11 mm) (Neodent), II: long implant (5 × 11 mm) (Bicon), III: short implant (5 × 6 mm) (Neodent), and IV: short implants (5 × 6 mm) (Bicon). The models were positioned in a circular polariscope associated with a cell load and static axial (0.5 Kgf) and nonaxial load (15°, 0.5 Kgf) were applied to each group for both prosthetic crown heights. Three-way ANOVA was used to compare the factors implant length, crown height, and implant system (α = 0.05). The results showed that implant length was a statistically significant factor for both axial and nonaxial loading. The 13 mm prosthetic crown did not result in statistically significant differences in stress distribution between the implant systems and implant lengths studied, regardless of load type (P > 0.05). It can be concluded that short implants showed higher stress levels than long implants. Implant system and length was not relevant factors when prosthetic crown height were increased.
Resumo:
Fibromyalgia syndrome (FMS) is a chronic painful syndrome and the coexistence of a painful condition caused by Temporomandibular Disorders (TMD) and FMS has been frequently raised for several studies, however, more likely hypothesis is that a set of FMS characteristics may lead to the onset of TMD symptoms and they are not merely coexisting conditions. Therefore, our aim is presenting a review of literature about the relation between fibromyalgia and the signs and symptoms of temporomandibular disorders. For this purpose, a bibliographic search was performed of the period of 1990-2013, in the Medline, Pubmed, Lilacs and Scielo databases, using the keywords fibromyalgia, temporomandibular disorders and facial pain. Here we present a set of findings in the literature showing that fibromyalgia can lead to TMD symptoms. These studies demonstrated greater involvement of the stomatognathic system in FMS and myogenic disorders of masticatory system are the most commonly found in those patients. FMS appears to have a series of characteristics that constitute predisposing and triggering factors for TMD.
Resumo:
This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity.
Resumo:
This paper presents the state of the art of self-etch adhesive systems. Four topics are shown in this review and included: the historic of this category of bonding agents, bonding mechanism, characteristics/properties and the formation of acid-base resistant zone at enamel/dentin-adhesive interfaces. Also, advantages regarding etch-and-rinse systems and classifications of self-etch adhesive systems according to the number of steps and acidity are addressed. Finally, issues like the potential durability and clinical importance are discussed. Self-etch adhesive systems are promising materials because they are easy to use, bond chemically to tooth structure and maintain the dentin hydroxyapatite, which is important for the durability of the bonding.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física